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Disclaimer: While extensive testing has been performed by the Zhiwu Zhang Lab at (2014 to present) at 

Washington State University and Edward Buckler Lab (2012-2014) at Cornell University, respectively. 

Results are, in general, reliable, correct, and appropriate. However, results are not guaranteed for any 

specific set of data. We strongly recommend that users validate GAPIT results with other software 

packages, such as SAS and TASSEL. 

 

Support documents: Extensive support documents, including this user manual, source code, 

demonstration scripts, data, and results, are available at GAPIT website hosted by Zhiwu Zhang 

Laboratory: http://zzlab.net/GAPIT 

 

Questions and comments: To benefit GAPIT community, questions and comments should be addressed 

to GAPIT forum: https://groups.google.com/forum/#!forum/gapit-forum. The GAPIT team members will 

periodically go through these questions and comments and address them accordingly. For countries with 

restriction on Google, questions and comments are welcome to Jiabo Wang by email: 

wangjiaboyifeng@163.com. 

 

Citation: Multiple statistical methods are implemented in GAPIT version 1, 2 and 3. Citations of GAPIT 

vary depending on methods and versions used in the analysis: 
 

Method Method paper Version 11 Version 22 Version 33 

General Linear Model (GLM) Price et al, 2006, Nature Genetics4 ✓ ✓ ✓ 

Mixed Linear Model (MLM) Yu et al, 2005, Nature Genetics5 ✓ ✓ ✓ 

Compression MLM (CMLM) Zhang et al, 2010, Nature Genetics6 ✓ ✓ ✓ 

gBLUP Zhang et al, 2007, J. Anim. Science7 ✓ ✓ ✓ 

Enriched CMLM Li et al, 2014, BMC Biology8  ✓ ✓ 

SUPER Wang et al, 2014, PLoS One9  ✓ ✓ 

MLMM Segura et al, 2012, Nature Genetics10   ✓ 

FarmCPU Liu et al, 2016, PloS Genetics11   ✓ 

cBLUP and sBLUP Wang et al, 2019, Heredity12   ✓ 

BLINK Huang et al, 2019, GigaScience13   ✓ 
 

Note: These references are listed in section of Reference. 

 
 

 
 

 

The GAPIT project is partially supported by USDA, DOE, NSF, the Agricultural Research Center at 

Washington State University, and Washington Grain Commission 
 

http://zzlab.net/GAPIT
https://groups.google.com/forum/#!forum/gapit-forum
mailto:wangjiaboyifeng@163.com
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1 INTRODUCTION 

1.1 Why GAPIT? 

GAPIT implemented a series of methods for Genome Wide Association (GWAS) and Genomic Selection 

(GS). The GWAS models include General Linear Model (GLM), Mixed Linear Model (MLM or Q+K), 

Compressed MLM (CMLM), Enriched CMLM, SUPPER, Multiple Loci Mixed Model (MLMM), 

FarmCPU and BLINK. The GS models include gBLUP, Compressed BLUP, and SUPER BLUP.  

 

 
 

Figure 1.1. Methods implemented in GAPIT for GWAS and genomic selection. All the methods support 

GWAS, including General Linear Model (GLM), Mixed Linear Model (MLM), Compressed MLM 

(CMLM), Enriched CMLM (ECMLM), Settlement of MLM Under Progressively Exclusive Relationship 

(SUPER), Fixed and random model Circulating Probability Unification (FarmCPU), and Bayesian-

information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). Some of these methods 

support genomic selection, including MLM, CMLM, ECMLM, SUPER, and FarmCPU. The remaining 

(GLM and BLINK) can be used for breeding through marker assisted selection (MAS). 
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1.2 Getting Started 

GAPIT is a package that is run in the R software environment, which can be freely downloaded from 

http://www.r-project.org or http://www.rstudio.com. There are two sources to install GAPIT package.  

Zhiwu Zhang Lab website:    Or GitHub: 

 
 
 

The easiest way is to COPY/PASTE GAPIT tutorial script. Here are example code and outputs: 
 

 
 

 
 

As demonstrated above, users can specify any one or multiple models. GAPIT accepts multiple input data 

formats, including both numeric, hapmap, and PLINK genotype formats. GAPIT produces comprehensive 

reports to interpret data and results in publication ready formats. For examples, the distribution of marker 

density and decay of linkage equilibrium inform user if the markers are dense enough. When GWAS were 

conducted with multiple traits, environments, or multiple models, GAPIT produces the integrated 

Manhattan plots with overlapped associated markers highlighted. The above analysis should be completed 

within couple minutes. In your current R working directory, you should find multiples files with three types 

of extensions: pdf, csv, and txt. The three types of the Manhattan plots are displayed above.  

source("http://zzlab.net/GAPIT/GAPIT.library.R") 

source("http://zzlab.net/GAPIT/gapit_functions.txt") 

#Import data from Zhiwu Zhang Lab 

myY  <- read.table("http://zzlab.net/GAPIT/data/mdp_traits.txt", head = TRUE) 
myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T) 

myGM=read.table(file="http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T) 

 

#GWAS 

myGAPIT=GAPIT( 
Y=myY[,c(1,2,3)], #fist column is ID 

GD=myGD, 

GM=myGM, 

PCA.total=3, 

model=c("FarmCPU", "Blink"), 

Multiple_analysis=TRUE) 

install.packages("devtools") 
devtools::install_github("jiabowang/GAPIT3",force=TRUE) 

library(GAPIT3) 

 

http://www.r-project.org/
http://www.rstudio.com/
http://www.zzlab.net/GAPIT/gapit_tutorial_script.txt
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1.3 How to use the GAPIT user manual?  

The next three chapters (2-5) describe details on the input data, GWAS, GS, and output results. Chapter 6 

presents scenarios to demonstrate the applications. Chapter 7 is for users to use GAPIT for prototyping. The 

last chapter (8) lists frequently questions and answers.  Before reading the next three chapters, we 

recommend you go directly to the tutorial chapter and run other tutorials. 

1.4  How to cite GAPIT?  

Although historical version of GAPIT (1 and 2) are available, the newest version (3) is recommended for 

full support from GAPIT team. Citations should specify the version and models used. For an example, a 

GWAS run by GAPIT version 3 using BLINK can cite as “The GWAS was conducted by GAPIT (version 

3)3 using BLINK model13” . A GS with run by GAPIT version 3 using gBLUP/cBLUP can cite as “GS was 

conducted by GAPIT (version 3)3 using gBLUP model7 and cBLUP model12”. 
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2 Input Data 
There are six types of input data: phenotype (Y), genotype in hapmap format (G), genotype data in 

numerical format (GD), genotype map (GM), kinship (K), and covariate variables (CV), see Table 2.1. 

Phenotypic data must be provided, and the rest are optional, including genotype data, map, kinship, and 

covariate. Kinship can be provided by users or be generated from genotype data, or even omitted by suing 

BLINK method. Genotypic data may not be needed for genomic prediction if the kinship matrix is provided. 

Covariate variables (fixed effects), such as population structure represented by the Q matrix (subpopulation 

proportion) or principal components (PCs), are optional. GAPIT provides the option to calculate PCs from 

the genotypic data. All input files should be saved as a “Tab” delimited text file. 

 

Notice: It is important that each taxa name is spelled, punctuated, and capitalized (R is case sensitive) the 

same way in each of the input data sets. If this is not done, they will be excluded from the analysis. 

Additionally, the taxa names must not be numeric. 

 

Table 2.1 Gallery of GAPIT input data 

 

The tutorial file can be downloaded at: http://zzlab.net/GAPIT/GAPIT_Tutorial_Data.zip. These files can 

read into R with following commands:  
 

 

2.1 Phenotypic Data 

The user has the option of performing GWAS on multiple phenotypes in GAPIT. This is achieved by 

including multiple phenotype columns in phenotypic file. Taxa names should be in the first column of the 

phenotypic data file and the remaining columns should contain the observed phenotype from each 

individual. Missing data should be indicated by either “NaN” or “NA”. The first ten observations in the 

tutorial data (mdp_traits.txt) are displayed as follows: 

 

Param

eter 
Default Options Description Tutorial files* 

Y NULL User Phenotype mdp_traits.txt 

KI NULL User Kinship Matrix KSN.txt 

CV NULL User Covariate Variables mdp_PC.txt 

G NULL User Genotype Data in Hapmap Format mdp_genotype_test.hmp.txt 

GD NULL User Genotype Data in Numeric Format mdp_numeric.txt 

GM NULL User 
Genotype Map for Numeric 

Format 
mdp_SNP_information.txt 

#Phenotypic Data 

#myY  <- read.table("mdp_traits.txt", head = TRUE) 

 
#HapMap genotype format 

myG <- read.delim("mdp_genotype_test.hmp.txt", head = FALSE) 

 

#Numerical genotype format 

#--------------------A pair of Genotypic Data and map files------------------------------- 
myGD <- read.table("mdp_numeric.txt", head = TRUE) 

myGM <- read.table(“mdp_SNP_information.txt", head = TRUE) 

 

#Kinship matrix 

myKI <- read.table("KSN.txt", head = FALSE) 
 

#covaraite variables (such as population structure represented by Q matrix or PC) 

myCV <- read.table("mdp_PC", head = TRUE) 

 

http://zzlab.net/GAPIT/GAPIT_Tutorial_Data.zip
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The file is “Tab” delimited. The first row consists of column labels (i.e., headers). The column labels 

indicate the phenotype name, which is used for the remainder of the analysis. 

 

The phenotype file can be input to R by typing command line: 
 

 

2.2 Genotypic Data 

Genotypic data are required for GWAS, but are optional for GS. In the later case, genomic prediction is 

performed using a kinship matrix provided by the user. GAPIT accepts genotypic data in either HapMap 

format or in numeric format. 

2.2.1  Hapmap Format 

Hapmap is a commonly used format for storing sequence data where SNP information is stored in the rows 

and taxa information is stored in the columns. This format allows the SNP information (chromosome and 

position) and genotypes of each taxa to be stored in a single file. 

 

The first 11 columns display attributes of the SNPs and the remaining columns show the nucleotides 

observed at each SNP for each taxa. The first row contains the header labels and each remaining row 

contains all the information for a single SNP. The first five individuals on the first seven SNPs from the 

tutorial data (mdp_genotype.hmp.txt) are presented below. 

 

 
 

This file can be read into R by typing the following command line: 

 
 

myY <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 
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Although all of the first 11 columns are required, GAPIT uses only 3 of these: the “rs” column, which is 

the SNP name (e.g. “PZB00859.1”); the “chrom” column, which is the SNP’s chromosome; and the “pos”, 

which is the SNP’s base pair (bp) position. It is sufficient to fill in the requested information in the remaining 

eight columns with “NA”s. To be consistent with HapMap naming conventions, missing genotypic data are 

indicated by either “NN” (double bit) or “N” (single bit). 

 

For genotypic data in HapMap format, GAPIT accepts genotypes in either double bit or in the standard 

IUPAC code (single bit) as following: 

 

 
 

By default, the HapMap numericalization is performed so that the sign of the allelic effect estimate (in the 

GAPIT output) is with respect to the nucleotide that is second in alphabetical order. For example, if the 

nucleotides at a SNP are “A” and “T”, then a positive allelic effect indicates that “T” is favorable. Selecting 

“Major.allele.zero = TRUE” in the GAPIT() function will result in the sign of the allelic effect estimate 

being with respect to the minor allele. In this scenario, a positive allelic effect estimate will indicate that the 

minor allele is favorable. 

2.2.2 Numeric format 

GAPIT also accepts the numeric format. The order of taxa and SNPs is reversed from the HapMap format. 

Columns are used for SNPs and rows are used for taxa in the numeric format. This format is problematic in 

Excel because the number of SNPs used in a typical analysis exceeds the Excel column limit. Additionally, 

this format does not contain the chromosome and position of the SNPs. Therefore, two separate files must 

be provided to GAPIT. One file contains the numeric genotypic data (called the “GD” file), and the other 

contains the position of each SNP along the genome (called the “GM” file).  

Note: The SNPs in the “GD” and “GM” files NEED to be in the same order. 

 

Homozygotes are denoted by “0” and “2” and heterozygotes are denoted by “1” in the “GD” file.  Any 

numeric value between “0” and “2” can represent imputed SNP genotypes. The first row is a header file 

with SNP names, and the first column is the taxa name. The example file (mdp_numeric.txt from tutorial data set) 

is as following: 

 

taxa PZB00859.1 PZA01271.1 PZA03613.2 PZA03613.1 

33-16 2 0 0 2 

38-11 2 2 0 2 

4226 2 0 0 2 

4722 2 2 0 2 

A188 0 0 0 2 

…     

 

This file can be read into R by typing the following command line: 

 
 

The genetic map (“GM”) file contains the name and location of each SNP. The first column is the SNP id, 

the second column is the chromosome, and the third column is the base pair position. As seen in the example, 

the first row is a header file. The example file (mdp_SNP_information.txt from tutorial data set) is as following: 

Genotype AA CC GG TT AG CT CG AT GT AC

Code A C G T R Y S W K M

myGD <- read.table("mdp_numeric.txt", head = TRUE) 
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Name Chromosome Position 

PZB00859.1 1 157104 

PZA01271.1 1 1947984 

PZA03613.2 1 2914066 

PZA03613.1 1 2914171 

PZA03614.2 1 2915078 

…   

 

 

This file is read into R by typing the following command line: 

 
 

2.3 Kinship 

The kinship matrix file (called “KI” in GAPIT) is formatted as an n by n+1 matrix where the first column 

is the taxa name, and the rest is a square symmetric matrix. Unlike the other input data files, the first row 

of the kinship matrix file does not consist of headers. The example (KSN.txt from tutorial data set) is as following: 

 

 
 

This file is read into R by typing the following command line: 

 

2.4 Covariate variables 

A file containing covariates (called “CV” in GAPIT) can include information such as population structure 

(commonly called the “Q matrix”), which are fitted into the GWAS and GS models as fixed effects. These 

files are formatted similarly to the phenotypic files. Specifically, the first column consists of taxa names, 

and the remaining columns contain covariate values. The first row consists of column labels. The first 

column can be labeled “Taxa”, and the remaining columns should be covariate names. The example file 

(mdp_population_structure.txt from tutorial data set) is as following 

 

myGM <- read.table("mdp_SNP_information.txt", head = TRUE) 

myKI <- read.table("KSN.txt", head = FALSE) 
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This file is read into R by typing the following command line: 

 
 

myCV <- read.table("mdp_population_structure.txt", head = TRUE) 
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3 GWAS 

3.1 GWAS model overview 

Currently, GAPIT has implemented more than ten models. The similarity and difference among seven 

milestone models are summarized in the figure below. The simplest model (t test) is to directly detect the 

association between a phenotype (y) and markers (Si) one at a time, where i=1 to m, and m is number of 

markers. When a cofactor, such as population structure (Q) is introduced through a general linear model 

(GLM), the cofactor may not only account residuals (e) partially, but also adjust some effect that does not 

belong to the testing markers and consequently reduce false positives. The mixed linear model (MLM) 

applies the same principle by adding individuals’ genetic effects as random cofactor effects with variance 

structure defined by the kinship (K) among individuals. In both Q or Q+K models, Q and K stay the same. 

There are no cofactors that are adjusted by the marker tests. 

 

Inclusion of cofactors benefits the 

reduction of false positives for testing 

markers in GLM and MLM. The 

disadvantage is these cofactors are also 

confounded with the testing markers. In 

MLM particularly, the kinship defines the 

genetic effect of individuals which equal 

the sum of causal genes. Many know 

genes identified by GLM had signals 

below threshold using MLM14.  

 

The compressed MLM (CMLM) was 

proposed to reduce the confounding 

problem of MLM6. Individuals are 

compressed into groups. The individual 

genetic effects are replaced with the 

group genetic effects. Correspondingly, 

kinship among individuals is replaced 

with kinship among groups with 

grouping maximized using maximum 

likelihood method. The optimization of 

kinship among groups further improve 

statistical power8 in the enriched CMLM 

(ECMLM). 

 

GLM and MLM are the special cases of 

CMLM which is a general format. When 

number of groups is forced to be one in 

CMLM, CMLM becomes GLM. 

Similarly,  when number of groups is 

forced to be the number of individuals in 

CMLM, CMLM becomes MLM. The 

optimization of groping improves 

statistical power15. 
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The optimization of groping in CMLM and optimization of kinship among groups in ECMLM are 

thoroughly based on phenotypes. There is no impact from marker tests.  The situation was changed by the 

multiple loci mixed model (MLMM). Through marker association tests, the associated markers are fitted 

as the cofactors for marker test. The cofactors are adjusted through forward and backward stepwise 

regression of mixed model. However, both Q and K remain unchanged. 

 

In the SUPER method, K is derived from the associated markers and is adjected accordingly by the marker 

tests. As the K is derived from a smaller number of markers than the K in MLM and MLMM that are derived 

from all the markers, the confounding between K and some of the markers becomes more severe. SUPER 

eliminate the confounding by using the complimentary kinship derived from associated markers except for 

the ones that are in strong linkage disequilibrium (LD) with the testing markers under a user-defined 

threshold. 

 

To eliminate the ambiguity of determining associated markers are in LD with a testing marker, FarmCPU 

completely removes the confounding from kinship by using a fixed-effect model without a kinship derived 

either from all markers, or associated markers. Instead, the kinship derived from the associated markers is 

used to select the associated markers using the maximum likelihood method. This process overcomes the 

model overfitting problems of stepwise regression. FarmCPU uses both the fixed effect model and the 

random effect model iteratively. 

 

In both SUPER and FarmCPU models, the bin approach is used to avoid selecting markers from the same 

locations with bin size and the number of bins optimized using the maximum likelihood method. The 

underlying assumption is that causal genes are distributed equally across the genome. BLINK eliminates 

the assumption to improve statistical power by using the linkage disequilibrium (LD) method. Markers are 

sorted with the most significantly associated maker on the top as reference. The remaining markers are 

removed if they are in LD with the most associated marker. Among the remaining makers, the most 

significantly associated maker is selected as the reference. The process is repeated until no markers can be 

removed. The random effect model in FarmCPU to select associated markers using the maximum likelihood 

method remains a high computing cost for a large number of individuals. BLINK approximate the 

maximum likelihood using Bayesian Information Content (BIC) in a fixed-effect model to eliminate the 

computational burden. 

3.2 Model selection 

With the multiple models implemented in GAPIT, a common question is which to choose. Many people 

make the selection based on their trust gained over experience.  For example, some researchers must choose 

GLM implemented in PLINK16 because it is the only software accepted by the reviewers and editors in their 

fields. In general, computing efficiency and statistical power should be the criteria for the selection.  

 

Two models use the fixed-effect model only which is the most computing efficient, including GLM and 

BLINK. FarmCPU is a hybrid that uses both the fixed-effect model and the random effect model. The rest 

use a fixed and random effects mixed model which is computationally expensive, including MLM, CMLM, 

ECMLM, SUPER, and MLMM. CMLM uses groups and is cubic time faster than MLM. Due to additional 

optimizations, ECMLM and SUPER are slower than CMLM. For a trial analysis, GLM and BLINK are 

good to start with. 

 

Regarding statistical power, multiple loci models (e.g. MLMM, FarmCPU, and BLINK) are superior to the 

rest. Within multiple loci model category, FarmCPU is superior to MLMM11 and BLINK is superior to 

FarmCPU13. Within the single locus model category, MLM is superior to GLM5, CMLM is superior to 

MLM6, ECMLM is superior to ECMLM8, SUPER and MLM are superior to MLM9,10. These relationships 
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are summarized by the model stairs in the first chapter. The method on a higher stair has higher statistical 

power than the one on a lower stair. The magnitude of the differences among models may change from case 

to case, however, their order stays the same. The inversion of the order has not been found. Therefore, 

BLINK is selected as the default GAPIT model because of its high computing efficiency and statistical 

power. Users are welcome to use the following statement to justify the usage of BLINK. 
 

“In addition to the capability to incorporate principal components as covariates to reduce false positives 

due to population stratification, BLINK iteratively incorporates associated markers as covariates for 

testing markers to eliminate their connection to the cryptic relationship among individuals. The associated 

markers are selected according to linkage disequilibrium, optimized for Bayesian information content, and 

reexamined across multiple tests to reduce false negatives”. 

3.3 Model description 

The detailed model description is critical for readers to understand exactly how the analyses were performed 

or to replicate the analyses. As all the implemented models are well described elsewhere, the model 

description should focus on the covariates that are specific to the analyses. All covariates should be 

described in detail, including the levels for the category covariates. Here is an example: 
 

“GAWAS was conducted by GAPIT (version 3)3 using BLINK model17. The covariate variables include the 

first three principal components derived from all the markers and the origin-group. The origin group was 

coded as indicators (0/1) for each of the origin groups except the last one to avoid linear dependency”. 

3.4 Model justification 

It was found during the development of FarmCPU that causal genes can be detected even when they are 

confounded with population structure and population structure such as the first three principal components 

were fitted as covariates for testing markers. As an anonymous FarmCPU reviewer suggested, fitting several 

PCs does not hurt the degree of freedom very much, however, it helps in situations there are non-genetic 

effects associated with population structure during phenotyping. Otherwise, a false positive marker would 

appear to capture the non-genetic effect. Therefore, fitting several PCs is recommended for all analyses. 

The related justification is as follows. 

 

“Principal component analysis was performed with GAPIT (version 3)3 using all available SNPs. GAWAS 

was conducted by GAPIT (version 3)3 using BLINK model17. The first principal components were fitted as 

covariate variables to reduce the false positives due to population stratification”. 

3.5 GAPIT Syntax   

GAPIT can be executed by calling “GAPIT()” with inputs and parameters included in “()”. The inputs 

include phenotypes, genotype data, genetic map, covariate variables. The general parameters include 

number of PCs as covariates and models. More general parameters can be found in Table 3.5.1. 
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There are also parameters specific to models. For example, the CMLM model involves number of groups. 

These model specific parameters will be described within the sections of specific models. 
 

Table 3.5.1. GAPIT input parameters.  
Parameter Default Options Description 

model Blink 
GLM, MLM, CMLM, SUPER, 

MLMM, FarmCPU, and Blink 
Choose one or multiple models to conduct GWAS 

kinship.algorithm VanRaden Zhang, Loiselle and EMMA Algorithm to Derive Kinship from Genotype 

kinship.cluster average 
complete, ward, single, 

mcquitty, median, and centroid 
Clustering algorithm to group individuals based on their kinship 

kinship.group Mean Max, Min, and Median Method to derive kinship among groups 

LD.chromosome NULL User Chromosome for LD analysis 

LD.location NULL User Location (center) of SNPs for LD analysis 

LD.range NULL User Range around the Central Location of SNPs for LD Analysis 

PCA.total 0 >0 Total Number of PCs as Covariates 

PCA.scaling None Scaled, Centered.and.scaled Scale And/Or Center And Scale The SNPs Before Conducting PCA 

SNP.FDR 1 >0 and <1 Threshold to Filter SNP on FDR 

SNP.MAF 0 >0 and <1 Minor Allele Frequency to Filter SNPs in GWAS Reports 

SNP.effect Add Dom Genetic Model 

SNP.P3D TRUE FALSE Logic Variable to Use P3D or Not for Testing SNPs 

SNP.fraction 1 >0 and <1 Fraction of SNPs Sampled to Estimate Kinship and PCs 

SNP.test TRUE FALSE Logic Variable to Test SNPs or Not 

3.6 Mixed Linear Model (MLM) 

MLM includes both fixed and random effects. Including individuals as random effects gives an MLM the 

ability to incorporate information about relationships among individuals. This information about 

relationships is conveyed through the kinship (K) matrix, which is used in an MLM as the variance-

covariance matrix between the individuals. When a genetic marker-based kinship matrix (K) is used jointly 

with population structure (commonly called the “Q” matrix, and can be obtained through STRUCTURE18 

or conducting a principal component analysis19), the “Q+K” approach improves statistical power compared 

to “Q” only20. An MLM can be described using Henderson’s matrix notation as follows:  

 

Y = Xβ + Zu + e,         (1) 

 

where Y is the vector of observed phenotypes; β is an unknown vector containing fixed effects, including 

the genetic marker, population structure (Q), and the intercept; u is an unknown vector of random additive 

genetic effects from multiple background QTL for individuals/lines; X and Z are the known design matrices; 

and e is the unobserved vector of residuals. The u and e vectors are assumed to be normally distributed with 

a null mean and a variance of:  

 

 

           (2)

 

 

where G = σ2
aK with σ2

a as the additive genetic variance and K as the kinship matrix. Homogeneous 

variance is assumed for the residual effect; i.e., R= σ2
eI, where σ2

e is the residual variance. The proportion 

of the total variance explained by the genetic variance is defined as heritability (h2). 

 

Var
   

=   
   

u G 0

e 0 R
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,                                                              (3) 

3.7 Compressed MLM (CMLM) 

As kinship is derived from all the markers, incorporating with the kinship for testing markers in a MLM 

causes the confounding between the testing markers and the individuals’ genetic effects with variance 

structure defined by the kinship. To reduce the confounding, individuals are replaced by their corresponding 

groups in the compressed MLM developed by Zhang et al in 201021. Cluster analysis is used to assign 

similar individuals into groups. The elements of the kinship matrix are used as similarity measures in the 

clustering analysis. Various linkage criteria (e.g., unweighted pair group method with arithmetic mean, 

UPGMA) can be used to group the lines together. The number of groups is specified by the user. Once the 

lines are assigned into groups, summary statistics of the kinship between and within groups are used as the 

elements of a reduced kinship matrix. This procedure is used to create a reduced kinship matrix for each 

compression level. 

A series of mixed models are fitted to determine the optimal compression level.  The value of the log 

likelihood function is obtained for each model, and the optimal compression level is defined as the one 

whose fitted mixed model yields the largest log likelihood function value. There are three parameters to 

determine the range and interval of groups for examination: group.from, group.to and group.by. Their 

defaults are 0, n and 10, where n is the total number of individuals. 

3.8 General Linear Model (GLM) 

Regular MLM22 is an extreme case of CMLM where each individual is considered as a group. It can be 

simply performed by setting the number of groups equal to the total number of individuals, e.g. group.from 

= n and group.to = n, where n is total number of individuals shared in both the genotype and phenotype 

files. Similarly, general linear model (GLM) is another extreme case of CMLM where all individuals are 

considered as one group. It can be simply performed by setting the number of groups equal to one, i.e. 

group.from = 1 and group.to = 1. GLM is the working model in PLINK23, a primary software for studies in 

human genetics. 

3.9 P3D/EMMAx 

In addition to implementing compression, GAPIT uses EMMAx/P3D6,24 to reduce computing time for 

MLM, CMLM, ECMLM, and SUPER. If specified, the additive genetic (σ2
a) and residual (σ2

e) variance 

components will be estimated prior to conducting GWAS. These estimates are then used for each SNP 

where a mixed model is fitted.   

3.10 SUPER 

SUPER is an advanced version of FaST-Select, developed Wang et al. in 2016. The major difference 

between SUPER and FaST-Select is that SUPER uses bin approach to select associated markers. The entire 

genome is divided into equal sized bins and each bin is represented by the most significant marker on the 

bin. The bin size and number of bins selected are optimized using maximum likelihood method in a random 

model with the kinship derived from the selected bins. Consequently, the confounding between the kinship 

and some of markers become more severe than the kinship derived from all markers. SUPER eliminate the 

confounding by using the complementary kinship derived from associated markers except the ones that are 

in strong linkage disequilibrium (LD) with the testing markers under a user defined threshold. Both 

simulation and real data demonstrated that SUPER had higher statistical power than regular MLM. 

 

To run SUPER in GAPIT, simply specify model= "SUPER". 

2
2 a

2 2

a e

σ
h =

σ σ+
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3.11 Multiple Locus Mixed Linear Model (MLMM) 

GAPIT implemented a Multiple Loci Mixed Linear Model (MLMM) which use forward-backward stepwise 

linear mixed-model regression to include associated markers as covariates.  

 

To run MLMM in GAPIT, simply specify model= "MLMM". 

3.12 FarmCPU 

To solve the problem of false positive control and confounding between testing markers and cofactors 

simultaneously, an iterative method, named Fixed and random model Circulating Probability Unification 

(FarmCPU), was developed in 201611. The associated markers detected from the iterations are fitted as the 

cofactors to control false positives for testing the rest markers in a fixed effect model. To avoid the over 

model fitting problem in stepwise regression, a random effect model is used to select the associated markers 

using maximum likelihood method11.  

 

In the cycle of fixed effect model of iterations, markers are tested against the associated markers, not the 

confounded kinship used by MLM, CMLM, ECMLM, SUPER, and MLMM. In the cycle of random effect 

model of iterations, markers are selected among a small number of associated markers using maximum 

likelihood method to avoid the over model fitting problem in stepwise regression used by MLMM, which 

select marker among all available markers. Consequently, FarmCPU exhibits higher statistical power than 

MLMM11. As FarmCPU tests markers in a fixed effect model, it is computational efficient than the methods 

that test markers in random effect model, such as MLM, CMLM, ECMLM, SUPER, and MLMM11.  

 

To run FarmCPU in GAPIT, simply specify model= "FarmCPU". 

3.13 BLINK 

BLINK method was designed to have both high statistical power and computational efficiency13. It was 

inspired by FarmCPU method with two major changes to achieve the objectives. One is to eliminate the 

assumption that causal genes are evenly distributed across genome that required by FarmCPU. As the 

assumption cause either inclusion of non causal genes, or missing the causal genes that are in the same bin 

with another causal genes with stronger signal. BLINK works directly on markers instead of bins. Markers 

that are in linkage disequilibrium (LD) with the most significant marker are excluded. For the second 

remaining marker, the exclusion is conducted in the same way as the most significant marker, so on and so 

forth until no marker can be excluded.  

 

The other change is to use Bayesian Information Content (BIC) of a fixed effect model to approximate the 

maximum likelihood of a random effect model to select the associated markers among the markers remained 

the exclusion based on LD. As both the models of testing markers and selecting associated markers as 

cofactors are fixed effect model, the computation complexity reach the maximum. A dataset with one 

million individuals and one million markers can be solved in hours by using BLINK C version. The BLINK 

R version can be run as standard alone, or through GAPIT. To run BLINK in GAPIT, simply specify model= 

"Blink". The performances of the two versions were documented by the BLINK article on GigaScience13.  
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4 Genomic Selection 
Genomic selection, or genomic prediction termed in human genetics, is to use genetic markers across the 

whole genome to predict individual performances if formats of phenotypes or predicted genetic merit. In 

contrast to GWAS, there is a strong interaction between prediction methods and the traits measured in a 

particular condition. The reversion of method superiorities has been found in many cases. The genomic 

selection based on SUPER, named SUPER BLUP, has higher prediction accuracy than the genomic 

selection based on MLM known as genomic BLUP (gBLUP) for traits controlled with a smaller number of 

genes. The prediction accuracies are reversed for traits controlled by a large number of genes. The genomic 

selection based on CMLM, named Compressed BLUP, has higher accuracy for traits with low heritability 

than gBLUP. GAPIT implemented a series of methods for GWAS and genomic selection toward high 

statistical power. 

4.1 Genomic BLUP  

Genomic prediction is performed with the method based on genomic best linear unbiased prediction, 

(gBLUP)7. The method was extended to compressed best linear unbiased prediction (cBLUP) by using the 

CMLM approach that was proposed for GWAS6. The genetic potential for a group, which is derived from 

the BLUPs of group effects in the compressed mixed model, is used as a prediction for all individuals in 

the group.  

 

The groups created from compression belong to either a reference (R) or an inference (I) panel. All groups 

in the reference panel have at least one individual with phenotypic data, and all groups in the inference 

panel have no individuals with phenotypic data. Genomic prediction for groups in the inference panel is 

based on phenotypic ties with corresponding groups in the reference panel.  

 

The group kinship matrix is then partitioned into to R and I groups as follows:  
 
 
          (4) 
, 
 

 

where kRR is the variance-covariance matrix for all groups in the reference panel, kRI is the covariance 

matrix between the groups in the reference and inference panels, kIR = (kRI)’ is the covariance matrix 

between the groups inference and reference panels, and kII is the variance-covariance matrix between the 

groups in the inference panels. 
 
Solving of mixed linear model is performed on the reference individuals.   
         
 ,        (5) 
 
where all terms are as defined in Equation (1), and the “R” subscript denotes that only individuals in the 
reference panel are considered. 
 
 
The genomic prediction of the inference groups is derived Henderson’s formula (1984) as follows: 
 
 ,         (6) 
 
 
where kIR, kRR , and uR are as previously defined, and uI is the predicted genomic values of the individuals 

in the inference group.  
 
The reliability of genomic prediction is calculated as follows: 
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            (7) 
 
 
 

where PEV is the prediction error variance which is the diagonal element in the inverse left-hand side of 

the mixed model equation, and  is the genetic variance. 

4.2 Compressed gBLUP  

The compressed MLM substitute individuals with their corresponding groups that were clustered based on 

the kinship among individuals. Research demonstrates that the compressed MLM had higher statistical 

power for GWAS. Research also demonstrated that compressed MLM also had higher prediction accuracy 

than the regular MLM, especially for traits with low heritability. As the regular MLM is an extreme case 

of compressed MLM, the compressed MLM has higher, or at least equal prediction accuracy as the 

regular MLM. When a compressed MLM is specified in GAPIT, individuals’ breeding values are 

predicted by the breeding values of their corresponding groups. 
 

4.3 SUPER gBLUP  

The regular MLM uses the kinship derived from all the markers while SUPER uses the kinship derived 

from the associated markers. As the associated markers are selected from all the markers using the 

maximum likelihood method, the kinship used by SUPER has a better likelihood than the kinship used by 

the regular MLM. Research demonstrated that the estimated breeding values from SUPER had higher 

prediction accuracy than the estimated breeding values from the regular MLM.  
 

  

2

a



GAPIT User Manual 

 

 21 

5 Output Results 
 

GAPIT produces a series of output files that are saved in two formats. All tabular results are saved as comma 

separated value (.csv) files, and all graphs are stored as printable document format (.pdf) files. This section 

provides descriptions of these output files. 
 

File name Description Type 

Allelic_Effect_Estimates Estimate allelic effect with method CSV 

Df.tValue.StdErr Estimate allelic t-value CSV 

GWAS.Results SNP information and P-Value CSV 

Log Log of whole model CSV 

PRED Genomic Prediction CSV 

ROC Table for power and FDR CSV 

Kin.VanRaden kinship with VanRanden method CSV 

PCA Principle components analysis CSV 

PCA.eigenvalues Eigenvalues of PCA CSV 

PCA.loadings Rotation of PCA CSV 

Compression.multiple.group Compress likelihood, heritability and variance. PDF 

MAF Minimum Allelic Frequency PDF 

Manhattan.Plot.Chromosomewise Chromosome Manhattan PDF 

Manhattan.Plot.Genomewise Genome Manhattan PDF 

Optimum Heritability and Variance components PDF 

phenotype_view Phenotype analysis PDF 

QQ-Plot QQ plot PDF 

ROC Power and FDR in ROC PDF 

Heterozygosity Heterozygosity of genotype PDF 

Kin.VanRaden Heat map of kinship PDF 

Marker.Density Marker Density PDF 

Marker.LD LD of first 1000 markers PDF 

PCA.2D 2D PCA plot PDF 

PCA.3D 3D PCA plot PDF 

PCA.eigenValue Eigenvalue and variance of PCA PDF 

NJtree.fan Fan type NJ tree PDF 

NJtree.unrooted Unrooted NJ tree PDF 

Manhattan.Mutiple.Plot Manhattan plot for multiple traits or methods PDF 

Circular.Manhattan.Plot. Circular Manhattan plot PDF 

Multraits.QQplot QQ plot for multiple trait or method PDF 

Interactive.PCA Interactive PCA plot HTML 

Interactive.Manhattan Interactive Manhattan plot HTML 

Interactive.QQ Interactive QQ plot HTML 
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5.1 Phenotype diagnosis 

GAPIT diagnosis phenotype in several ways, including scatter plot, histogram, box plot and accumulative 

distribution. 
 

 

5.2   Marker density 

Marker density is critical to establish Linkage Disequilibrium (LD) between markers and causal 

mutations. Comparison between the marker density and the LD decade over distance provides the 

indication if markers are dense enough to have good coverage of LD. 

 
Figure 5.2 Frequency and accumulative frequency of marker density. Distribution of marker density is 

displayed as a histogram and an accumulative distribution.  
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5.3   Linkage Disequilibrium Decay 

Linkage disequilibrium are measured as R square for pair wise markers and plotted against their distance. 

The moving average of adjacent markers were calculated by using a sliding windows with ten markers.  

 

 
 

Figure 5.3 Linkage disequilibrium (LD) decay over distance. LDs were calculated on sliding windows with 

100 adjacent genetic markers. Each dot represents a pair of distances between two markers on the window 

and their squared correlation coefficient. The red line is the moving average of the 10 adjacent markers. 

5.4  Heterozygosis 

The frequency of heterozygous were calculated for both individuals and markers. High level of 

heterozygosis indicated low quality. For example, over 50% of heterozygosis on inbred lines for some of 

markers suggested they problematic (see bottom right).  
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5.5   Principal Component (PC) plot 

For each PC included in the GWAS and GPS models, the observed PC values are plotted.  

 

 
 

Figure 5.5 Pair-wise plots and 3D plots of principal component (PC).  

5.6   Kinship plot 

The kinship matrix used in GWAS and GPS is visualized through a heat map. To reduce computational 

burden, this graph is not made when the sample size exceeds 1,000. 
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Figure 5.6 Kinship plot. A heat map of the kinship matrix is created to indicate the relationship between 

individuals. 

 

5.7 Neighbor-Joining (NJ)-tree 

Following the compress group, we classify individuals to explain population structure. We also can plot 

group PCA plot with previous group. 

 
 

Figure 5.7 Neighbor-Joining (NJ)-tree The whole population was divided into 5 clusters with each colors.  

 

5.8   QQ-plot 

The quantile-quantile (QQ) –plot is a useful tool for assessing how well the model used in GWAS accounts 

for population structure and familial relatedness. In this plot, the negative logarithms of the P-values from 

the models fitted in GWAS are plotted against their expected value under the null hypothesis of no 

association with the trait. Because most of the SNPs tested are probably not associated with the trait, the 

majority of the points in the QQ-plot should lie on the diagonal line. Deviations from this line suggest the 

presence of spurious associations due to population structure and familial relatedness, and that the GWAS 

model does not sufficiently account for these spurious associations. It is expected that the SNPs on the 

upper right section of the graph deviate from the diagonal. These SNPs are most likely associated with the 

trait under study. By default, the QQ-plots in GAPIT show only a subset of the larger P-values (i.e., less 

significant P-values) to reduce the file size of the graph. 
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Figure 5.8 Quantile-quantile (QQ) –plot of P-values. The Y-axis is the observed negative base 10 logarithm 

of the P-values, and the X-axis is the expected observed negative base 10 logarithm of the P-values under 

the assumption that the P-values follow a uniform[0,1] distribution. The dotted lines show the 95% 

confidence interval for the QQ-plot under the null hypothesis of no association between the SNP and the 

trait. 

 
 

5.9  Manhattan Plot 

The Manhattan plot is a scatter plot that summarizes GWAS results.  The X-axis is the genomic position 

of each SNP, and the Y-axis is the negative logarithm of the P-value obtained from the GWAS model 

(specifically from the F-test for testing H0: No association between the SNP and trait). Large peaks in the 

Manhattan plot (i.e., “skyscrapers”) suggest that the surrounding genomic region has a strong association 

with the trait. GAPIT produces one Manhattan plot for the entire genome (Figure 3.4) and individual 

Manhattan plots for each chromosome. 
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Figure 5.9 Manhattan plot. The X-axis is the genomic position of the SNPs in the genome, and the Y-axis 

is the negative log base 10 of the P-values. Each chromosome is colored differently. SNPs with stronger 

associations with the trait will have a larger Y-coordinate value.  

 

5.10  Association Table 

The GWAS result table provides a detailed summary of appropriate GWAS results. The rows display the 

results for each SNP above the user-specified minor allele frequency threshold. The SNPs sorted by their P 

values (from smallest to largest).  

 

Table 5.10 GWAS results for all SNPs that were analyzed. 

 

 
 

This table provides the SNP id, chromosome, bp position, P-value, minor allele frequency (maf), sample 

size (nobs), R2 of the model without the SNP, R2 of the model with the SNP, and adjusted P-value following 

a false discovery rate (FDR)-controlling procedure25. 

 

5.11  Allelic Effects Table 

A separate table showing allelic effect estimates is also included in the suite of GAPIT output files. The 

SNPs, presented in the rows, are sorted by their position in the genome. 
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Table 5.11 Information of associated SNPs. 

 

 
 

This table provides the SNP id, chromosome, bp position, and the allelic effect estimate of each SNP 

analyzed. 

5.12  Compression Profile 

There are seven algorithms available to cluster individuals into groups for the compressed mixed linear 

model. There are also four summary statistics available for calculating the group kinship matrix. When only 

one group number (i.e., one dimension for the group kinship matrix) is specified, a column chart is created 

to illustrate the compression profile for 2*log likelihood function (the smaller the better), genetic variance, 

residual variance and the estimated heritability.  

 

 
 

Figure 5.12.1. Compression profile with single group. The X-axis on all graphs display the summary 

statistic method used to obtain the group kinship matrix. The rectangles with different colors indicate the 

clustering algorithm used to group individuals. 

 

Note: This graph is not created when multiple groups are specified. 

 

When a range of groups (i.e., a range of dimensions for the group kinship matrix) is specified, a different 

series of graphs are created. In this situation, the X-axis displays the group number. Lines with different 

style and colors are used to present the combinations between clustering algorithm and the algorithm to 

calculate kinship among groups.  
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Figure 5.12.2. Compression profile over multiple groups.  The X-axis on each graph is the number of 

groups considered, and the Y-axes on the graphs are the -2*log likelihood function, the estimated genetic 

variance components, the estimated residual variance component, the estimated total variance, and the 

heritability estimate. Each clustering method and group kinship type is represented as a line on each graph. 

 

Notice: This graph is not created when only one group is specified. 

 

5.13 The Optimum Compression 

Once the optimal compression settings are determined, GAPIT produces a PDF file containing relevant 

detailed information. This information includes the optimal algorithm to calculate the group kinship matrix, 

the optimal clustering algorithm, the optimal number of groups, -2*log likelihood function and the 

estimated heritability. 

 

 
 

Figure 5.13 The profile for the optimum compression. The optimal method to calculate group kinship is 

“Mean”, the optimal clustering method is “average”, the number of groups (ie., the dimension of the 

group kinship matrix) is 251, the value of -2*log likelihood function is 1800.11, and the heritability is 

41.6%. 
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5.14 Model Selection Results 

By selecting “Model.selection = TRUE”, forward model selection using the Bayesian information 

criterion (BIC) will be conducted to determine the optimal number of PCs/Covariates to include for each 

phenotype. The results summary (below) for model selection are stored in a .csv file called 

“.BIC.Model.Selection.Results”.  

 

Table 5.14.1 Summary for Bayesian information criterion (BIC) model selection results. 

 
 

The number of PCs/Covariates, the BIC value, and the log Likelihood function value are presented. In this 

table, the optimal number of PCs to include in the GWAS model is 2. 

5.15 Multiple traits, environments, or models 

There are several new method integrated in. Furthermore, more than single method or trait result, we 

propose a multiple method or traits Manhattan and QQ plots for comparison with methods or traits, this 

part is based on MVP library to exhibit. There are two types of Manhattan plots (Orthogon and 

Roundness). 

 
 

Figure 5.15.1 Multiple traits or methods Manhattan and QQ plot. The dash line in the Figure A indicated 

the common significant markers were detected by two methods or traits. The solid line in the Figure A 

indicated the common significant markers were detected by more than two methods or traits. 
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Another multiple Manhattan plot with multiple symphysis could be created  in the GAPIT now. The 

square, triangle, circle, diamond, and inverted triangle indicated each GWAS results of multiple methods 

or traits. Users also can define the type of points by “allpch” parameter. 

 

 
Figure 5.15.2 Multiple traits or methods symphysis Manhattan plot. The dash line indicated the common 

significant markers were detected by two methods or traits. The solid line indicated the common 

significant markers were detected by more than two methods or traits. 

 

5.16 Genomic Prediction 

The genomic prediction results are saved in a .csv file.  

Table 4.16.1 Genomic Breeding values and prediction error variance. 

 
 

The individual id (taxa), group, RefInf which indicates whether the individual is in the reference group (1) 

or not (2), the group ID number, the BLUP, and the PEV of the BLUP. 
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Figure 5.16 Interactive GS plot for gBLUP, cBLUP and sBLUP. 

 

5.17 Distribution of BLUPs and their PEV. 

A graph is provided to show the joint distribution of GBV and PEV. The correlation between them is an 

indicator of selection among the sampled individuals26. 
 

 
 

Figure 5.17 Joint distribution of genomic breeding value and prediction error variance.  
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5.18 Interactive GWAS plot 

A graph is provided to show the Interactive Manhattan and QQ plot with “Inter.Plot=T”. These files are 

HTML and supported to act with mouse. The more details of SNP will be showed when the mouse moved 

on the point. 

 
Figure 5.18 Interactive Manhattan and QQ plot.  
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6 Tutorials 
The “Getting started” section should be reviewed before running these tutorials, and it is assumed that the 

GAPIT package and its required libraries have been installed. These tutorials begin with a scenario requiring 

minimal user input. Subsequent scenarios require a greater amount of user input. Each scenario involves 

two steps: reading in the data and then running the GAPIT() function. All tutorials are available on the 

GAPIT home page, which also contains the R source code and results for all the scenarios. 

 

The GAPIT maize demonstration data (described at www.panzea.org) are from a maize association panel 

consisting of 281 diverse lines27. The genotypic data consist of 3,093 SNPs distributed across the maize 

genome, and are available in HapMap and numeric format. The three phenotypes included are ear height, 

days to pollination, and ear diameter. The kinship matrix was calculated using the method of Loiselle et 

al.28 and the fixed effects used to account for population structure were obtained from STRUCTURE 29. 

 

Notice: It is important that the correct paths to the directories are specified. Please note that two backward 

slashes (“\\”) are necessary when specifying these paths. 

6.1 A Basic Scenario 

The user needs to provide two data sets (phenotype and genotype) and one input parameter. This parameter, 

“PCA.total”, specifies the number of principal components (PCs) to include in the GWAS model. GAPIT 

will automatically calculate the kinship matrix using the VanRaden method30, perform GWAS and genomic 

prediction with the optimum compression level using the default clustering algorithm (average) and group 

kinship type (Mean). The scenario assumes that the genotype data are saved in a single file in HapMap 

format. If the working directory contains the tutorial data, the analysis can be performed by typing these 

command lines: 

 

 
 

6.2 Enhanced Compression 

In this scenario, the user can specify additional clustering algorithms (controlled by the “kinship.cluster” 

parameter) and kinship summary statistic (controlled by the “kinship.group” parameter). The default is 

kinship.cluster="average", and kinship.group="Mean". Their expansion, the Enriched CMLM8 improves 

statistical power. Additionally, a specific range group numbers (i.e., dimension of the kinship matrix) can 

be specified. This range is controlled by the “group.from”, “group.to”, and “group.by” parameters. The 

analysis can be performed by typing these command lines: 

 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

G=myG, 

PCA.total=3 

) 

http://www.panzea.org/
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6.3 User-inputted Kinship Matrix and Covariates 

This scenario assumes that the user provides a kinship matrix and covariate file. The kinship matrix or 

covariates (e.g., PCs) may be calculated previously or from third party software. When the PCs are input in 

this way, the parameter “PCA.total” should be set to 0 (default). Otherwise, PCs will be calculated within 

GAPIT, resulting in a singular design matrix in all model fitted for GWAS. The analysis can be performed 

by typing these command lines: 

 

 
 

6.4 Multiple Genotype Files 

In this scenario, the HapMap genotypic data set from Scenario 1 is subdivided into multiple genotype 

files , one for each chromosome. This scenario mimics the situation where the genotype file is too large to 

be handled in R. When this situation arises, all genotype files need to have a common name and 

extensions, as well as a sequential number (e.g., “mdp_genotype_chr1.hmp.txt”, 

“mdp_genotype_chr2.hmp.txt”, …). The starting and ending file are indicated by the “file.from” and 

“file.to” parameters. The common file name (e.g., “mdp_genotype_chr”) and file name extension (e.g., 

“hmp.txt”) are passed to GAPIT through the “file.G”, “file.Ext.G” parameters, respectively. When 

“file.path” is not provided, GAPIT try to get the data from the current working directory. The analysis can 

be performed by typing these command lines: 

 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

G=myG, 

PCA.total=3, 

kinship.cluster=c("average", "complete", "ward"), 

kinship.group=c("Mean", "Max"), 

model="CMLM" 

) 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

myKI <- read.table("KSN.txt", head = FALSE) 

myCV <- read.table("mdp_PC", head = TRUE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

G=myG, 

KI=myKI, 

CV=myCV 

) 
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The three genotype file used in these scenario are from the file used in Tutorial 5.1. Their results should 

be identical.  

6.5 Numeric Genotype Format  

In this scenario, the genotype data set from Scenario 1 is formatted differently, specifically in numerical 

format. Two genotype files are required. One file contains the genotypic data, and the other contains the 

chromosome and base pair position of each SNP. These are passed to GAPIT through the “GD” and “GM” 

parameters, respectively. The analysis can be performed by typing these command lines: 

 

 

6.6 Numeric Genotype Format in Multiple Files 

In this scenario, the numeric genotype data set from Scenario 6 is subdivided into multiple genotype files. 

The common name and extension of genotype data file are passed to GAPIT through “file.GD” and 

“file.Ext.GD” parameters, respectively. Similarly, the common name and extension of genotype map file 

are passed to GAPIT through the “file.GM” and “file.Ext.GM” parameters, respectively. The analysis can 

be performed by typing these command lines: 

 

 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

PCA.total=3, 

file.G="mdp_genotype_chr", 

file.Ext.G="hmp.txt", 

file.from=1, 

file.to=10, 

file.path="C:\\myGAPIT\\" 

) 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myGD <- read.table("mdp_numeric.txt", head = TRUE) 

myGM <- read.table("mdp_SNP_information.txt" , head = TRUE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

GD=myGD, 

GM=myGM, 

PCA.total=3 

) 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

PCA.total=3, 

file.GD="mdp_numeric", 

file.GM="mdp_SNP_information", 

file.Ext.GD="txt", 

file.Ext.GM="txt", 

file.from=1, 

file.to=3, 

) 
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The three genotype file used in these scenario are the splits from the file used in the previous scenario. 

Their results should be identical.  

 

6.7 Fractional SNPs for Kinship and PCs 

The computations of kinship and PCs are extensive with large number of SNPs. Sampling a fraction of it 

would reduce computing time. More importantly, it would give very similar result with appropriate number 

of SNPs sampled. The fraction can be controlled by “Ratio” parameter in GAPIT. The sampling scheme is 

random. A line of “SNP.fraction=0.6” is added to the previous scenario which has 3,093 SNPs: 

 

 

6.8 Memory saving 

With large amount of individuals, loading a entire large genotype dataset could be difficult. GAPIT load a 

fragment of it each time. The default of the fragment size is 512 SNPs. This number can be changed with 

“file.fragment” parameter in GAPIT. Here is an example of using “file.fragment =128”. 

 

 
 

This scenario is the same as previous scenario except changing “file.fragment” from default (512) to 128. 

As SNPs (minimume of two) are sampled withing each fragment, the final SNPs sampled would be 

different for different length of fragment when the SNP sample fraction is less than 100%.  The results in 

this scenario would be different from the previous one.  

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

PCA.total=3, 

file.GD="mdp_numeric", 

file.GM="mdp_SNP_information", 

file.Ext.GD="txt", 

file.Ext.GM="txt", 

file.from=1, 

file.to=3, 

SNP.fraction=0.6 

) 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

PCA.total=3, 

file.GD="mdp_numeric", 

file.GM="mdp_SNP_information", 

file.Ext.GD="txt", 

file.Ext.GM="txt", 

file.from=1, 

file.to=3, 

SNP.fraction=0.6, 

file.fragment = 128 

) 
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6.9 Model selection 

The degree of correlation with population structure varies from trait to trait. Therefore, the full set of PCs 

selected to account for population structure in the GWAS model are not necessary for all traits. As such, 

GAPIT has the capability to conduct Bayesian information criterion (BIC)-based model selection to find 

the optimal number of PCs for inclusion in the GWAS models. Model selection is activated by selecting 

“Model.selection = TRUE”. The results for the BIC model selection procedure are summarized in the 

“.BIC.Model.Selection.Results.csv” output file. 

 
 

6.10 SUPER 

GAPIT also implements the SUPER GWAS method9, which extracts a small subset of SNPs and uses 

them in FaST-LMM. This method not only retains the computational advantage of FaST-LMM, but also 

increases statistical power.  

 

 

 
 

 

6.11 MLMM 

Multiple Loci Mixied linear Model is published by Segura in 2012. The code of MLMM in GAPIT is: 

 
 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

G=myG, 

PCA.total=3, 

Model.selection = TRUE 

) 

#Step 1: Set data directory and import files 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt" , head = FALSE) 

 

#Step 2: Run GAPIT 

myGAPIT_SUPER <- GAPIT( 

Y=myY[,c(1,2)],    

G=myG,     

PCA.total=3,     

model=”SUPER” 

) 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

G=myG, 

PCA.total=3, 

model="MLMM" 

) 
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6.12 Farm-CPU 

Fixed and random model Circulating Probability Unification (FarmCPU) is published by Xiaolei in 2016. 

The code of Farm-CPU in GAPIT is: 

 

 
 

6.13 BLINK 

Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) is published by 

Meng in 2018. The code of BLINK used in GAPIT is: 

 

 
The BLINK C version execute file should be in the working directory and change mod 777. 

(chmod 777 blink_versions) 

The execute file can be downloaded at https://github.com/Menggg/BLINK/blob/master/ 

 

 

6.14 Multiple model 

The GAPIT provide an approach for comparison of multiple methods in GWAS. All GWAS methods in 

the GAPIT can be used in here: 

 

 
 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

G=myG, 

PCA.total=3, 

model="FarmCPU" 

) 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

G=myG, 

PCA.total=3, 

model="Blink" 

) 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myGD=read.table("http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T) 

myGM=read.table("http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY, 

GD=myGD, 

GM=myGM, 

PCA.total=3, 

Multiple_analysis=TRUE, 
model=c("GLM","MLM","MLMM","FarmCPU","Blink") 

) 

https://github.com/Menggg/BLINK/blob/master/
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6.15 gBLUP 

The gBLUP is based on the Mixed linear Model to predict phenotype, BLUP, and BLUE value. 

 

 
 

 

6.16 cBLUP 

The cBLUP is based on the compressed Mixed linear Model. It used optimum compression group kinship 

instead of individual kinship. 

 

6.17 sBLUP 

The sBLUP is based on the SUPER Model. It used pseudo QTNs to build individual kinship. 

 

 
  

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myGD=read.table("http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T) 

myGM=read.table("http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY[,c(1,2)], 

GD=myGD, 

GM=myGM, 

PCA.total=3, 

model=c("gBLUP") 

) 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myGD=read.table("http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T) 

myGM=read.table("http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY[,c(1,2)], 

GD=myGD, 

GM=myGM, 

PCA.total=3, 

model=c("cBLUP") 

) 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myGD=read.table("http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T) 

myGM=read.table("http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T) 

 

#Step 2: Run GAPIT 

myGAPIT <- GAPIT( 

Y=myY[,c(1,2)], 

GD=myGD, 

GM=myGM, 

PCA.total=3, 

model=c("sBLUP") 

) 
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7 Prototype 
 

The usage of GAPIT described in previous chapters barely require knowledge of R. Users can simply 

copy/paste the command lines from the user manual with a minimal keyboard typing such as changing 

file names and path. All the results are saved in the format of text files and PDF files. GAPIT also output 

R objects which can be used for advance purposes, including: 1) developing new statistical approaches or 

software package using GAPIT output as a starting point; 2) comparing GAPIT with other new or existing 

statistical methods or software packages; 3) studying a specific result from GAPIT. Using these objects 

require knowledge of R. This chapter give examples to use GAPIT output R objects.  

7.1 Statistical power comparison among methods  

GAPIT.Power.compare() is an example function use multiple functions in GAPIT and the output R 

objects to perform comparison of statistical power using different models. The deteils can be found in 

GAPIT source code. The following is an example to use the function. Note: running 100 replicates may 

take more than a day to finsh.  
 

 
 
 
 
 
 
 
 
 
 
 

  

myGD <-read.table("mdp_numeric.txt", head = TRUE) 

myGM <-read.table("mdp_SNP_information.txt", head = TRUE) 

GAPIT.Power.compare( 

myGD=myGD, 

myGM=myGM, 

nrep=100, 

h2=0.9, 

all.method=c("GLM","MLM","MLMM","FarmCPU","BLINK"), 

NQTN=5) 
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7.2 Genomic selection 
GAPIT.Prediction() is another example of using GAPIT subfunctions and R objects outputs for GS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3 Cross validation with replacement  

Here we demonstrate an example of studying a specific output of GAPIT, specifically to investigate the 

accuracy of genome prediction through cross validation. 

 

First, we randomly set 25% of original phenotype (Y) as missing (NA) and generate a genomic prediction 

model by using their kinship. Then we record the correlation between the predicted phenotypic values and 

the original phenotype. We repeat this process for 1000 times. The average correlation is used as the 

criteria of genome prediction accuracy. The corresponding R code is displayed in the following box. The 

accuracy (correlation coefficient) over the 100 replicates (for demonstration purposes only; we suggest 

myY<-read.table("mdp_traits.txt", head = TRUE) 

myGD <-read.table("mdp_numeric.txt", head = TRUE 

myGM <-read.table("mdp_SNP_information.txt", head = TRUE) 

set.seed(99163) 

GAPIT.Validation( 

Y=myY[,1:2], 

model=c("gBLUP"), 

GD=myGD, 

GM=myGM, 

PCA.total=3, 

file.output=T, 

nfold=5 

) 
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using 1000 replications) were 0.9203 and 0.6749 in the reference and inference (cross validation), 

respectively. The standard deviations were 0.078 and 0.0054 in the reference and inference, respectively. 

 

R code for cross validation with replacement 

 
 

7.4 Cross validation without replacement  

Cross validation can also be performed by excluding one or a set of individuals in the reference to derive 

predicted phenotypic values from the genomic prediction model. Using this approach, this process can be 

#Import files 
####################################################################################### 
myY  <- read.table("mdp_traits.txt", head = TRUE) 
myKI <- read.table("KSN.txt", head = FALSE) 
myCV <- read.table("mdp_PC", head = TRUE) 
 
#Initial 
####################################################################################### 
t=100 #total replicates 
s=1/5 #sample of inference, e.g. set it to 1/5 for five fold cross validation 
Y.raw=myY[,c(1,3)]#choos a trait 
Y.raw=Y.raw[!is.na(Y.raw[,2]),] #Remove missing data 
n=nrow(Y.raw) 
n.missing=round(n*s) 
storage.ref=matrix(NA,t,1) 
storage.inf=matrix(NA,t,1) 
 
#Loop on replicates 
for(rep in 1:t){ 
 
#Set missing data 
sample.missing=sample(1:n,n.missing) 
if(n.missing>0){ Y0=Y.raw[-sample.missing,] 
}else{Y0=Y.raw} 
 
#Prediction 
myGAPIT <- GAPIT( 
Y=Y0,    
KI=myKI,     
CV=myCV,     
model="gBLUP" 

) 
prediction=myGAPIT$Pred 
 
#Separate reference (with phenotype) and inference (without phenotype) 
prediction.ref=prediction[prediction[,3]==1,] 
prediction.inf=prediction[prediction[,3]==2,] 
 
#Merge prediction with original Y 
YP.ref <- merge(Y.raw, prediction.ref, by.x = "Taxa", by.y = "Taxa") 
YP.inf <- merge(Y.raw, prediction.inf, by.x = "Taxa", by.y = "Taxa") 
 
#Calculate correlation  and store them 
r.ref=cor(as.numeric(as.vector(YP.ref[,2])),as.numeric(as.vector(YP.ref[,6]) )) 
r.inf=cor(as.numeric(as.vector(YP.inf[,2])),as.numeric(as.vector(YP.inf[,6]) )) 
storage.ref[rep,1]=r.ref 
storage.inf[rep,1]=r.inf 
}#End of for (rep in 1:t) 
 
storage=cbind(storage.ref,storage.inf) 
colnames(storage)=c("Reference","Inference") 
write.table(storage, "GAPIT.Cross.Validation.txt", quote = FALSE, sep = "\t", row.names = TRUE,col.names = NA) 
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repeated until all the individuals have been excluded at least once. The correlation between the originals 

and the prediction (might be more than once) is used as the accuracy of prediction. The following 

demonstrate the process with the same data in previous section. 

 

 
 

7.5 Convert HapMap format to numerical 

Many software require genotype data in the numerical format. GAPIT can perform such conversion with a 

few lines of code as follows. 

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE) 

myGAPIT <- GAPIT(G=myG, output.numerical=TRUE) 

myGD= myGAPIT$GD 
myGM= myGAPIT$GM 

 

  

#Initial 
####################################################################################### 

nj= 200 # number of Jack Knifes, nj>0, nj!=1 

 

Y.raw=myY[,c(1,3)]#choos a trait 

Y.raw=Y.raw[!is.na(Y.raw[,2]),] #Remove missing data 
n=nrow(Y.raw) 

 

if(nj>=1){nLoop=nj 

}else{ 

  nLoop=1/nj 
} 

assignment=ceiling((1:n)/(n/nLoop)) 

randomization=sample(1:n,n) 

assignment=assignment[randomization] 

nLoop=ceiling(nLoop) 
 

#Loop on replicates 

for(rep in 1:nLoop){ 

 

#Set missing data 
if(nj>=1){Y0=Y.raw[assignment!=rep,] 

}else{ 

  Y0=Y.raw[assignment==rep,] 

} 

#Prediction 
myGAPIT <- GAPIT( 

Y=Y0,    

KI=myKI,     

CV=myCV,     

model=" gBLUP " 
) 

prediction=myGAPIT$Pred 
 

#Separate reference (with phenotype) and inference (without phenotype) 

if(rep==1){ 

  prediction.inf=prediction[prediction[,3]==2,] 

  }else{ 
  prediction.inf=rbind(prediction.inf,prediction[prediction[,3]==2,] ) 

  } 

}#End of for (rep in 1:t) 

 

#Merge prediction with original Y 
YP.inf <- merge(Y.raw, prediction.inf, by.x = "Taxa", by.y = "Taxa") 

 

#Calculate correlation  and store them 

r.inf=cor(as.numeric(as.vector(YP.inf[,2])),as.numeric(as.vector(YP.inf[,6]) )) 

write.table(YP.inf, "GAPIT.Jack.Knife.txt", quote = FALSE, sep = "\t", row.names = TRUE,col.names = NA) 

print(r.inf) 
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8 Appendix 
 

8.1 GAPIT Biography 

Date Version Event 

11-May-11 1.2 

First public release with following method implemented: 

•       Principal component method to encounter population structure (Price). 

•       Unified mixed model to encounter both population structure and kinship. 

•       EMMA method to improve the speed to estimate variance components (ratio). 

•       Compressed mixed model to improve statistical power and speed 

•       P3D or EMMAx to improve speed by estimating population parameters (e.g. 

variances and grouping) only once. 

13-Jun-11 1.22 Genotype in numerical format in addition to hapmap format 

2-Sep-11 1.31 Reading fragment within single genotype file to save memory 

17-Sep-11 1.36 Interface change for prototyping 

24-Oct-11 1.41 Option to impute missing genotypes as middle, major, minor, present/absent.  

1-Nov-11 1.42 Matrix partitioning to improve speed (5-10 fold faster) 

7-Dec-11 2.01 FaST-LMM method implemented 

19-May-12 2.19 Splitting big genotype file into small ones 

8-Jul-12 NA GAPIT Bioinformatics paper accepted for publication 

8-Nov-12 2.2 Automatic sorting taxa in kinship for regular MLM 

14-Feb-13 2.25 Confidence interval on QQ plot 

26-Apr-13 2.26 Labeling QTNs on Manhattan plot  

15-Jul-14 2.27 SUPER implemented 

20-Aug-14 2.28 ECMLM implemented 

25-Oct-14 2.29 VanRaden kinship algorithm with centralization 

28-Feb-15 2.3.41 Enrichment on output figures and tables 

5-Sep-15 by date Uniform output across models (Version 3 initiation) 

12-Oct-15   Simulation of category phenotype 

22-Oct-15  Compression BLUP (cBLUP) for genomic prediction 

1-Apr-16   GAPIT version 2 paper published by Plant Genome 

4-Apr-16  Pedigree-like marker based kinship 

4-Apr-16   SUPER BLUP (sBLUP) for genomic prediction 

31-Mar-17  Indicating LD to the strongest associated marker above threshold 

2-May-18   Add cBLUP and sBLUP demo script into user manual 

Jul 17,2019  Add command for loading GAPIT from GitHub 

Sep 4, 2021   GAPIT version 3 paper published on Genomics, Proteomics & Bioinformatics 
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8.2 Frequently Asked Questions 

1. How to cite GAPIT? 

A: Citation may vary based on the usage of versions (the first version1 ,the second version2, or the third 

version3), and methods involved, such as the regular MLM20 methods, CMLM6, ECMLM8, SUPER9, 

P3D6, FarmCPU31, and BLINK13. Here is an example: “The GWAS was conducted using the BLINK 

model17 implemented in GAPIT R Software package (version 3)3”. 

2. What do I do if I get frustrated? 

A: Try to go through this Q/A list and GAPIT Forum first before asking help from GAPIT team.  If you 

need to contact GAPIT team, email to Dr. Xiaolei Liu (email: xll19870827@hotmail.com) on questions 

related to FarmCPU, Dr. Meng Huang (email: meng.huang.cn@gmail.com) for questions related to 

BLINK, or Dr. Jiabo Wang (email: wangjiaboyifeng@163.com) on rest questions.  In all cases (Forum 

or Emails), please state your names and your institutions.  

3. Why GAPIT has different results from other software? 

A: The most common reasons to have different results is that these software packages use different genetic 

models (e.g. additive vs. additive + dominant), statistical models (e.g. GLM, MLM, CMLM, and 

ECMLM), and processing of missing data. The GAPIT Bioinformatics paper demonstrated that GAPIT 

and TASSEL gave identical results for inbred (additive only) without missing values for using MLM.  

4. There are many methods implemented in GAPIT, which one should I use? 

A: Literature demonstrated the order of statistical power: BLINK > FarmCPU> MLMM > SUPER > 

ECMLM > CMLM > MLM > GLM.  

5. How many PCs to include? 

A: There no clear answer for this question. However, here are the two ways most of people do. 1) The 

number of principal components (PCs) included in the GWAS models can be adjusted in GAPIT. To 

help determine the number of PCs that adequately explain population structure, a screen plot is provided 

in the GAPIT output (if at least one PC is selected for inclusion into the final model). Once the ideal 

number of PCs is determined, GAPIT should be reran with this number PCs included in the GWAS 

models; 2) Use BIC-based model selection (activated by writing Model.selection = TRUE in the 

GAPIT() function) to determine the “optimal” number of PCs. The optimal is in quotations because no 

evidence has been found for optimum statistical power. 

6. Is it feasible I compare different models on my data?  

A: Yes, you can compare different models implemented in GAPIT or other software packages through 

simulation. All you need is a genotype file. The demo source code is amiable at the Workshop of 

Assessment of Statistical Power in GWAS (http://zzlab.net/WorkshopISU). 

7. How do I report an error? 

A: In order to fix the problem, please copy and paste the error message from the R environment and attach 

your R source code and the dataset that allow us to repeat the error. 

8. What should I do with “Error in file (file, "rt") : cannot open the connection”? 

A: In most cases this error is caused by incorrect file name or number of file specific is more than exist. 

http://zzlab.net/WorkshopISU
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9. What should I do with “Error in GAPIT (... : unused argument(s) ...”? 

A: In most cases this error is caused by incorrect spelling of GAPIT key word such as upper or lower case, 

or missing a comma. 

10. How deal with “Error in solve.default(crossprod(X, X)) : system is computationally 

singular”? 

A: Check covariate variables and remove the ones that are linear dependent with others. 

11. How to fix the error of using covariates from STRUCTURE as fixed effects? 

A: This error is occurring because the covariates from STRUCTURE are linearly dependent. In particular, 

for a given individual/taxa, these covariates sum to 1. To circumvent this error, remove one of the 

STRUCTURE covariates from the corresponding input file.  

12. Should I remove SNPs with MAF below 5%?   

A: The answers are Yes/No.  Rare SNPs with low Minor Allele Frequency (MAF) usually cause false 

positives, especially for small samples and traits that do not have normal distribution. However, many 

causal genetic variants are rare. A recommended practice is to not remove them, but interpret them with 

caution.  

13. My trait was measured in multiple environments, how do I use them simultaneously?   

A: They can be averaged across environments, and use means by GAPIT. The genetic and environmental 

interaction was implemented in a separated software package: GEMT (http://zzlab.net/GEMT). 

14. Is it OK to analyze binary traits (case-control) with GAPIT?   

A: Yes, there are many applications.  

15. Does normality transformation help?   

A: Yes, non-normality, rare variants and small samples jointly cause false positives. The transformation 

helps in case of small samples and SNPs with low MAF.  

16. Should I use PCs or Q matrix?  

A: Keyan Zhao and et al (PLoS Genetics, 2007) compared the two methods and demonstrated that they had 

similar statistical power.  

 

 

 

http://zzlab.net/GEMT
https://doi.org/10.1371/journal.pgen.0030004
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