Homework 1

Question 1:

The distribution I developed is similar to the chi-squared but calculate the sum of absolute values instead of squared values. The definition is: If $x i \sim N(0,1)$, then $y=\operatorname{sum}(\operatorname{abs}(x i)) \sim \operatorname{Dong}(n)$. Parameters for this function are:
n number of observations
df degree of freedom

Table 1. Mean and Variance for Dong distribution

n	df	mean	variance
10000	10	7.948539	3.59024
10000	100	79.807136	36.53036
10000	1000	797.633324	352.85265
10000	10000	7979.188234	3572.22830

Table 1 shows the mean and variance for ten thousand observations with different df. Approximately, the expectation $=0.8 * d f$, variance $=0.36 * d f$.

Question 2:

Ten thousand observations were sampled with $\mathrm{df}=5$, their properties were graphed in Fig 1. Mean values for these observations is 3.973651 and the variance is 1.832585 .
Potentially, this distribution may be used where chi-squared distribution were previously used, such as test the independence for categorical data.

Fig 1. Ten thousand observations following the Dong distribution

Question 3:

The function "rf2(n, df1, df2)" (see the R code) was developed following these steps:

1) generate df 1 and df2 observations following normal distribution by using rnorm function 2) calculate the sum of squares, then $U \sim X^{2}(d f 1), V \sim X^{2}(d f 2)$
2) $\mathrm{F}=(\mathrm{U} / \mathrm{df} 1) /(\mathrm{V} / \mathrm{df} 2) \sim \mathrm{F}(\mathrm{df} 1, \mathrm{df} 2)$

A comparison showed it works almost the same with the default "df" function (Fig 2).

Fig 2. Comparison of rf (default) and rf2 (self-defined) functions

Question 4:

Set the $\mathrm{df} 1=100, \mathrm{df} 2=1000$, and $10,100,1000$ and 100000 F distributed variables were sampled, H 0 : All the samples were from a distribution with mean of 1.002004 .

Table 2. T-test for mean

n	mean	expected mean	t-test p	H0 (5\% threshold)
10	1.0091091		0.09595051	accept
100	0.9985443		0.93392793	accept
1000	1.0018997	1.002004	0.56051767	accept
100000	1.0020603		0.21102045	accept

According to the t -test p values in table 2 , under 5% of threshold, accept the hypothesis that all the 4 samples were from a distribution with mean of 1.002004 .

Question 5:

Set the $\mathrm{df} 1=100, \mathrm{df} 2=1000$, and sampled $10,100,1000$ and 100000 F distributed variables, H 0 : All the samples were from a distribution with variance of 0.02213665 .

Table 3. Chi-squared test for variance

n	variance	expected variance	chi-squared test p	H0 (5\% threshold)
10	0.02339999		0.39127282	accept
100	0.02844433		0.02956745	reject
1000	0.02286461	2213665	0.22906609	accept
100000	0.02223917		0.15022465	accept

According to the chi-squared test p values, under 5\% of the threshold, accept the hypothesis that the 1st, 3rd and 4th samples with $10,1000,100000$ variables were from a distribution with variance of 0.02213665 , reject the hypothesis that the 2 nd sample with 100 variables was from a distribution with variance of 0.02213665 .

