
Crop 545 Lab 7
Lec 9 Phenotype Simulation

Y.Song
2/12/2018

This document is an annotated demonstration of the R codes provided from Lecture 9 (genetic architechture &
phenotype simulation) to Lecture 12 (PCA). For the time we have in lab, we will not be able to cover all codes in
detail. Please practice the script, discuss with your peers, and ask questions.

We cannot fully understand and make progress in coding without actually typing our own ideas!

‘Please notice warnings and messages in this document has been muted. When you run the script in R console, you
might get warning signs that were not shown here.

Lec 9: genetic architechture & phenotype simulation

For Lecture 8 we need to understand and be able to implement the G2P function. The script of the function is
already provided through the zzlab.net website. The target for this section is to understand it.

9.1 phenotype distribution

The R chunk below is from slide 9.6, which is a realization of 8.5. Here, we are simulating a phenometric distribution
in a trait. A brief but helpful explaination is here https://www.ncbi.nlm.nih.gov/books/NBK22080/.

Imagine we have m number of gene, and n number of individual in a trait.
m=100 # number of gene
n=500 # number of individual
x=runif(m) # x = a uniform r.v. with the length of m
gene=matrix(x,n,m,byrow = T)
gene = a matrix with n row and m col rows are repeats of the x we created above
The above create the matrix in 8.6 "assign to individuals"

next we will assign True/False values to each elemant in gene matrix by 50/50
chance. This is a review of how to flip a coin with R. Please make sure you
understand.
galton=matrix(runif(n*m),n,m)
galton is a matrix full of uniform (0,1) r.v., with same dimension as 'gene'
galton.binary=galton<.5
the above generate the matrix in 8.6 "Uniform random variable"

gene[galton.binary]=0 # at the 'TRUE' location, the origrinal 'gene' value
will be turned into zero
till here, certain genes in some individuals are 'expressed', in some are 'muted'.
y=rowSums(gene) # sum up the total gene effect in each individual
The following part contain a lot of plotting setting, please ignore.
The kernel is hist() for histogram diagram.
par(cex.lab=0.7, cex.axis=0.7, cex.main=0.8)
hist(y, freq=F, breaks=round(n/10), col="skyblue",lty="blank",

main="Simulated Phenometric Distribution")
lines(density(y), col="red")

1

https://www.ncbi.nlm.nih.gov/books/NBK22080/

Simulated Phenometric Distribution

y

D
en

si
ty

20 25 30 35

0.
00

0.
05

0.
10

0.
15

We can wrap the above idea into a function for convinience, so we can quickly compare the different distribution
under various combination of this two number. Please try write a function phe.sim() function which take m and n
as input and directly plot the histogram out. (The function is provided in the r script).

9.2 QTN position plot

The corresponding result slide is 9.17.

For plotting a QTN plot, the only information we need is ‘Chromosome’ and ‘Position’ information. With a ‘standard
& clean’ hapmap file, such information is already provided. For example:
QTN position plot
the hapmap example data is a subset of the dataset downloaded from the Dryland
website.
hapmapEX=read.table("hapmapEX.txt", header = T)
hapmapEX[1:6, 1:8]

rs. alleles chrom pos strand assembly. center protLSID
1 S1_68306052 C/T 1 68306052 + NA NA NA
2 S2_64594459 C/T 2 64594459 + NA NA NA
3 S3_45663174 G/A 3 45663174 + NA NA NA
4 S5_54683496 T/G 5 54683496 + NA NA NA
5 S2_20427728 A/C 2 20427728 + NA NA NA
6 S7_2890041 C/G 7 2890041 + NA NA NA

col3 = chrommosome
col4 = position
It should be a standard in all Hapmap format

plot(hapmapEX[, c(3,4)],
below are plot settings:
col="skyblue",
xlab="Chromosome", ylab="Position",
cex.lab=0.9, cex.axis=0.7)

2

2 4 6 8 10

0e
+

00
4e

+
07

8e
+

07

Chromosome

P
os

iti
on

In the lecture notes, we randomly pick some marker locations and circled it in the QTN plot. Please read the lecture
slides 8.16 - 8.19 and figure out how it was achieved. (Hint: QTN.position)

9.3 Simulate phenotype

Statistical simulation is a common and useful way in data analysis. The intuitition is such that since we have
some prior knowledge about the population - some kind of rule (e.g. the distribution, or some information mean,
variance. . .) of the population, we can construct a realization of data under that rule. Since the simulated data was
coming from the same rule of the population, we then believe it can somehow help us understand the unobserved
population.

In this section, we use the genotype data that we have, make some ‘rules’ about the distribution of the phenotype
(normally distributed), and construct some phenometic trait simulation.

In this part, we simply say yi = gi + ei, where yi is the phemometric trait, $ g_i$ is the gene effect, and ei is the
residual term. Our target is to get a simulated sample of yi. We will simulate gi, calculate ei and yi. Recall from
the lecture:

h2 = var(g)
var(g) + var(e)

then
var(e) = var(g) − var(g) × h2

h2

Sampling QTN
myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T)
NQTN=10
X=myGD[,-1]
n=nrow(X); m=ncol(X)
QTN.position=sample(m,NQTN,replace=F)
SNPQ=as.matrix(X[,QTN.position])
randomly simulate some additive effect.
recall the add effect follows a normal distribution
addeffect=rnorm(NQTN,0,1)
effect=SNPQ%*%addeffect
%*% stands for matrix multiplication

The above gives us an n× 1 column of gi’s:

3

0 50 100 200

−
4

0
2

4
6

Scatter plot of effect

Index

ef
fe

ct
Histogram of effect

effect

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
20

40
60

−
4

0
2

4
6

Boxplot of effect

−6 −2 0 2 4 6 8

0.
0

0.
4

0.
8

Cumulative density of effect

x

F
n(

x)

Now we assume an fixed h-sqaure score, and calculate residual variance var(e). Why? Because we assume
ei ∼ N(0, σ2), and with the calculated var(e) value, we can say σ̂2 = var(e) and be able to let R to generate some
normally distributed r.v.’s for us.
h2=.7
effectvar=var(effect)
residualvar=(effectvar-h2*effectvar)/h2 # see this equation in lecture notes
residual=rnorm(n,0,sqrt(residualvar))
y=effect+residual

In the above, we obtained the residuals, and then get the phenometric value by plus effect and residual together.
par(mfrow=c(2,2))
plot(residual,main="Scatter plot of residual")
hist(residual)
boxplot(residual, main="Boxplot of residual")
plot(ecdf(residual), main="Cumulative density of residual")

4

0 50 100 200

−
4

−
2

0
2

4

Scatter plot of residual

Index

re
si

du
al

Histogram of residual

residual

F
re

qu
en

cy

−4 −2 0 2 4

0
20

40
60

80

−
4

−
2

0
2

4

Boxplot of residual

−4 −2 0 2 4

0.
0

0.
4

0.
8

Cumulative density of residual

x

F
n(

x)

par(mfrow=c(2,2))
plot(y,main="Scatter plot of simulated phenotype")
hist(y,main="Histogram of simulated phenotype")
boxplot(y,main="Boxplot of simulated phenotype")
plot(ecdf(y),main="Cumulative density of simulated phenotype")

5

0 50 100 200

−
5

0
5

Scatter plot of simulated phenotype

Index

y
Histogram of simulated phenotype

y

F
re

qu
en

cy

−5 0 5 10

0
20

40
60

80

−
5

0
5

Boxplot of simulated phenotype

−5 0 5 10

0.
0

0.
4

0.
8

Cumulative density of simulated phenotype

x

F
n(

x)

9.4 Heritability

As we mentioned before, we simulated the phenometric trait data so we can use it to help us learn how much of
variation in the phenotypic trait was due to genetic variation. After we got the data, we simply plot the variability
out:
va=var(effect)
ve=var(residual)
vp=var(y)
v=matrix(c(va,ve,vp),1,3)
colnames(v)=c("A", "E","P") # assign names to columns

par(mfrow=c(1,2))
plot(density(y),ylim=c(0,.3), main="Density of Y, G, and e")
lines(density(effect),col="blue")
lines(density(residual),col="red")
barplot(v,col="gray")

6

−10 −5 0 5 10

0.
00

0.
15

0.
30

Density of Y, G, and e

N = 281 Bandwidth = 0.77

D
en

si
ty

A E P

0
2

4
6

Correlations between y and effects
Plot
par(mfrow=c(1,3))
plot(y,effect)
plot(y,residual)
plot(residual,effect)

−5 0 5

−
4

−
2

0
2

4
6

y

ef
fe

ct

−5 0 5

−
4

−
2

0
2

4

y

re
si

du
al

−4 −2 0 2 4

−
4

−
2

0
2

4
6

residual

ef
fe

ct

cor(y,effect)

[,1]
[1,] 0.8491922

9.5 G2P Function

In real life, we need to do the previous steps more than once. We can wrap all the idea into one function. This is
what the G2P function is useful for. It’s a long function, but you have already seen most of it in the above section.
Please read and try to understand it.
G2P=function(X,h2,alpha,NQTN,distribution){

n=nrow(X)
m=ncol(X)
#Sampling QTN
QTN.position=sample(m,NQTN,replace=F)

7

SNPQ=as.matrix(X[,QTN.position])
QTN.position
#QTN effects
if(distribution=="norm")
{addeffect=rnorm(NQTN,0,1)
}else
{addeffect=alpha^(1:NQTN)}
#Simulate phenotype
effect=SNPQ%*%addeffect
effectvar=var(effect)
residualvar=(effectvar-h2*effectvar)/h2
residual=rnorm(n,0,sqrt(residualvar))
y=effect+residual
return(list(addeffect = addeffect,

y=y, add = effect,
residual = residual,
QTN.position=QTN.position,
SNPQ=SNPQ))

}

8

	Lec 9: genetic architechture & phenotype simulation
	9.1 phenotype distribution
	9.2 QTN position plot
	9.3 Simulate phenotype
	9.4 Heritability
	9.5 G2P Function

