
AI4EVER, design,
implementation and
operations
Yang Hu

AI4EVER purpose

• Everyone can have their own AI models

• Integrate image label, AI model construction, training, and

validation

• GUI for model construction and training parameter attune.

• Visualize published model architecture and connections

AI4EVER Design

Swift

Graphical User Interface (GUI)

Model access/editing

Data access

Python

Neural Network computation

Data pre-process

Model component

Model training

AI4EVER Architecture

Input Model

Train

Validation

• Single image
• Image folder
• Table

• Pre-trained model
• Self-construct model

• Training set
• Test set

(from Input)
• Model setting

(from Model)
• Data augmentation
• Transfer learning

• Obtain trained
model with
Train settings

• Predict test set
from Input

Output

• Save model
architecture for
Model

• Save model
weights for Train

• Save validation
results to csv

AI4EVER Implementation
Input/
Label

Model/
Train

Strategy
config

Results/
Output

Load
image(s)

Label
image(s)

Load image
labels(csv)

Load pre-
defined
model

Construct
new model

Editing
Neural
Network
model

Load
training
data
set/label

Load model
weights
(optional)

Model
training
strategy
setting

User

Data

Display real-
time training
progress

Display plot
of train
accuracy and
validation
accuracy

Predict Label
view image(s)

AI4EVER – All in one GUI
Input:
Load test dataset
image/image
folder/csv file
*cannot be empty

Model:
Load model (json,
pb,h5)
*empty option: need to
choose default models
or make new model

Output:
Select or create folder to
save models, weights
and predictions to disk
(*Store model before
load new image)
Or save labeled data as
training dataset

Label:
• Crop single image to grids
• Visualize images from folder
• Display table from csv
• Label images by mouse clicking

Train:
• Default model options
• Neural network layer options
• Strategy config to start model

training setting

Result:
• Check real-time

training progress
• Exam accuracy

change of
training/validation in
all epochs

AI4EVER – Input

Click “Draw Grid” and click the interested
grids (white labeled as 0, red labeled as 1)

Click “Reverse!”
(Label value exchanged)

Click “Input” button load an image

Click “Load Grid Labels!”
(load a csv label file)

AI4EVER - Input

Click “Input” button load an
image folder

Drag the mouse to select
multiple images

Type in label value to label the
selected images and click

“Label image”

AI4EVER - Input

Click “Input” button load a csv
document

Double click on cells to change
values in the table

AI4EVER – Model Transfer Learning (Neural
Networks / Deep learning)

Click “Model” click “OK” do not choose any model
Load pre-trained model “ResNet50”
Neural Network Model editing:
Mouse click on layer component to display layer
configuration
*Pre-trained model layers cannot be removed

Model
Size
(MB)

Top-1
Accuracy

Top-5
Accuracy

Parameters Depth

Time (ms)
per

inference
step (CPU)

Time (ms)
per

inference
step (GPU)

Xception 88 79.0% 94.5% 22.9M 81 109.4 8.1
VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2
VGG19 549 71.3% 90.0% 143.7M 19 84.8 4.4

ResNet50 98 74.9% 92.1% 25.6M 107 58.2 4.6

EfficientNetB0 29 77.1% 93.3% 5.3M 132 46.0 4.9

EfficientNetB1 31 79.1% 94.4% 7.9M 186 60.2 5.6

EfficientNetB2 36 80.1% 94.9% 9.2M 186 80.8 6.5

EfficientNetB3 48 81.6% 95.7% 12.3M 210 140.0 8.8

EfficientNetB4 75 82.9% 96.4% 19.5M 258 308.3 15.1

EfficientNetB5 118 83.6% 96.7% 30.6M 312 579.2 25.3

EfficientNetB6 166 84.0% 96.8% 43.3M 360 958.1 40.4

EfficientNetB7 256 84.3% 97.0% 66.7M 438 1578.9 61.6

AI4EVER pre-trained (ImageNet) neural-network models

* Pre-trained models are from Keras and TensorFlow

https://keras.io/api/applications/xception
https://keras.io/api/applications/vgg/
https://keras.io/api/applications/vgg/
https://keras.io/api/applications/resnet/
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/efficientnet/
https://keras.io/api/applications/efficientnet/

AI4EVER – Model Construction

Click “New Model”
• Default three layers: input, flatten,

dense(output)

Select neural-network layers from “Add node
class”
Click on layer component to trigger layer editor
*Drag layer component to change their
positions
* Need to type layer names for input and output

Screen-record of neural-
network construction

AI4EVER – Model Construction

• Neural network layer operation supported by AI4EVER
• Conv2D
• ZeroPadding2D
• MaxPadding2D
• Batch Normalization
• Activation
• Flatten (before output layer)
• Dense (output layer)

1 0 1

0 1 0

1 0 1

Apply

Conv kernel

1x1 1x0 1x1

0x0 1x1 1x0

0x1 0x0 1x1

Sum

1+0+1+0+1+0+0
+0+1= 4

Figure from: Le, N.Q.K., Ho, Q.T. and Ou, Y.Y., 2017. Incorporating deep learning with convolutional neural networks and position specific
scoring matrices for identifying electron transport proteins. Journal of Computational Chemistry, 38(23), pp.2000-2006.

AI4EVER – Model Construction

• Conv2D layer editor
• Stride: height x width
• Kernel size: height x width
• Activation

• Functions add non-linearity

to neural-networks

• Padding
• Valid: No padding

• Same: use zero padding to

keep layer size the same

• Dilation rate
• Sparse conv kernels

• Filters
• Number of kernels

• Trainable
• True: update layer parameters during training

• False: do not update layer parameters

Stride: 3x2
Kernel: 2x2

Image from: Li, Y., Zhang, X. and Chen, D., 2018. Csrnet: Dilated convolutional
neural networks for understanding the highly congested scenes. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp. 1091-1100).

AI4EVER - Training

Button to trigger training
strategy

• Start: To train at the background
• Script: To generate command line script and all files to run on server or other computer

AI4EVER - Training

Script Output

Test dataset Training dataset

Command
Line script
file

Test
dataset
label

Python
package

Temporary
model

To implement script:
1. Open a terminal
2. Go to your script output folder
3. Type (MacOS & Linux):

chmod +x AI4EVER_script.txt
4. Run script (MacOS & Linux):

./AI4EVER_script.txt

AI4EVER - Training
• Test data: Path of input data

• Training data: Select a folder with your training dataset

• Training doc: Select your label file (*.csv) for your training
dataset

• Weights: neural-network parameters (*.hdf5) could be
empty

• Batch size: number of images in a batch

• Training eporch: number of iterations of model training

• Optimizer: Gradient method to find the minimum errors

• Loss function: Error measurement

AI4EVER - Training
• Train/Valid Ratio:

• Proportion of training and validation of training dataset
• E.g. 1,000 images, Train ratio 60%, Valid ratio 40%, then 600 will

be used for training, and 400 will be used for validation after each
eporch. Training model cannot access to validation data

• Image augmentation
• To produce more images for training dataset for neural networks

training
• Image transfer: produce x 4 per image by transfer image content
• Random Crops: produce x 4 per image by randomly cut image

content
• Rotation: produce x11 per image by image rotation of every 30

degrees
• Distortion: produce x 4 per image by change image content

shapes

AI4EVER - Training

• Transfer learning with extra layers
• Automatically add:

• A globalaverage2D layer
• A dropout layer
• A flatten layer
• A dense layer (output = predict class)

• Freeze model
• Chceked: Only update parameters to the extra layers
• Unchecked: Update parameters of all layers

• Dropout rate (%)
• To randomly remove parameters of % from dropout layer

• Dropout layer is common for EfficientNets

AI4EVER – Results

Real-time training progress monitor All eporch training results plots After training output

• Images & labels
• my_model.json: Neurtal

network model
• *.hdf5: model weight

AI4EVER link

https://zzlab.net/AI4EVER/https://zzlab.net/software/

https://zzlab.net/AI4EVER/
https://zzlab.net/software/

AI4EVER Installation

• Mac system
• Install Python 3.8.5

• Download installpkg(Mac)

• Download the latest version AI4EVER

Double click to install the packages

AI4EVER Demo

Thank you! Any questions?

