User Manual for

GAPIT

Genomic Association and Prediction Integrated Tool

(Version 3

Last updated onMay 4, 2022

~
T Q \
L ™

Zhiwu Zhang Laboratory

WASHINGTON STATE
@ [UNIVERSITY




GAPIT User Manual

Disclaimer: While extensiveesting has been performed by the Zhiwu Zhang L#&BCHt4 to present) at
Washington State University and Edward Buckler Lab (2BQ24) atCornell University respectively
Results are, in general, reliable, correstdappropriate. However, results aret guaranteed for any
specific set of data. We strongly recommend that users validate GAPIT results with other software
packages, such as SAS and TASSEL.

Support documents Extensive support documents, including this user manual, source code,
demonstratin scripts, data, and results, are available at GAPIT wdiissted by hiwu Zhang
Laboratory:http://zzlab.net/ GAPIT

Questions and commentsTo benefitGAPIT community questionsaand comments should be addressed
to GAPIT forum: https://groups.google.com/forum/#!forum/gafitum. The GAPIT team members will
periodicallygo through thesguestions and comments and address them accordigglgountries with
restriction on Googleguestions and comments are welcom&abo Wandy email:
wangjiaboyifeng@163.com

Citation: Multiple statistical methods are implemented in GARE&Fsion 1 2 and 3 Citations of GAPIT
vary depending m methodsaind versionsised in the analysis:

General Linear Model (GLM)  Priceet al, 2@6, Nature Genetics V V V
Mixed Linear Model (MLM) Yu et al, 205, Nature Genetics \ \% \%
Compression MLM (CMLM)  Zhang et al, 201Q\ature Genetics \ \% \Y
gBLUP Zhang et al, 2007. Anim. Science \Y \Y \Y
Enriched CMLM Li et al, 2014 BMC Biology \Y \%
SUPER Wang et al, 20147LoS Oné V V
MLMM Seguraet al, 202, Nature Genetic$ \%
FarmCPU Liu et al, 208, PloS Genetics \Y
cBLUP and sBLUP Wanget al, 209, Heredity*? \%
BLINK Huanget al, 208, GigaScienc® \Y

Note: These references disted in section of Reference
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1 I NTRODUCTI ON

1.1 Why GAPIT?

GAPIT implemented a series of methods for Genome Wide Association (GWAS) and Genomic Selection
(GS). The GWASmodelsinclude General Linear Model (GLM)Mixed Linear Model (MLM or Q+K),
Compressed MLM (CMLM), Enriched CMLM, SUPPER, Multiple Loci Mixed Mbd&LMM),
FarmCPU and BLINK. The G&odelsinclude gBLUP Compressed BLUP, arffUPER BLUP

MAS -

Genomic —
\ tI—J
BLU P SUPER iT
ECMLM QVL =)

CMLM AP

5 75

MLM

AR

[0)
—
<

Ve = GAPIT

Figure 1.1. Methods implemented in GAPIT for GWAS and genomic selection. All the methods support
GWAS, including General Linear ModeG(M ), Mixed Linear Model (MLM ), Compressed MLM
(CMLM ), Enriched CMLM ECMLM ), Settlement of MLM Under Progressively Exclusive Relationship
(SUPER), Fixed and random model Circulating Probability UnificatidramCPU), and Bayesian
information and Linkage&lisequilibrium Iteréively Nested Keyway BLINK ). Some of these methods
support genomic selection, including MLM, CMLM, ECMLM, SUPER, and FarmCPU. The remaining
(GLM and BLINK) can be used for breeding through marker assisted selection (MAS).
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1.2 Getting Started

GAPIT is a packag that is run in the R software environment, which can be freely downloaded from
http://www.rproject.orgor http://www.rstudio.comThere are twaourcego install GAPIT package.

Zhiwu Zhang Lab website: Or GitHub:
source("http://zzlab.net/GAPIT/GAPIT library.R") install.packages(atoals?)
e e ) devtools::install_github(“jiabowang/GAPIT3",force=TRUE)
library(GAPIT3)

The easiest way is to COPY/PASTAPIT tutorial script Hereareexamplecode and outputs:

#lmport data from Zhiwu Zhang Lab

myY <-read.table("http://zzlab.net/GAPIT/data/mdp_traits.txt", head = TRUE)
myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T)
myGM=read.table(file="http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T)

#GWAS

myGAPIT=GAPIT(
Y=myY[,c(1,2,3)], #fist column is ID
GD=myGD,

GM=myGM,

PCA total=3,

model=c{FarmCPU", "Blink"),
Multiple_analysis=TRUE)

B GAPIT.FarmCPU.EarHT.Manhattan.Plot Genomewise.pdf
B GAPIT.FarmCPU.EarHT.phenotype_view.pdf

B GAPIT.FarmCPU.EarHT.QQ-Plot.pdf

R GAPIT.FarmCPU.Pred.result.csv

‘IOQlD(P)

Plot.high.pdf
Plot.symphysic.pdf

FarmCPU.EarHT
=

B GAPIT.Multiple.QQ.plot.symphysic .pdf
B GAPIT.Multracks.QQ.plot.pdf

B GAPIT.PCA.2D.pdf

GAPIT.PCA.3D.pdf

R GAPIT.PCA.csv

B GAPIT.PCA.eigenValue.pdf

B GAPIT.PCA.eigenvalues.csv

B GAPIT.PCA.loadings.csv

~logso(p)
FarmCPU.dpol

13207 s FumCPUESHT © FamCPUGpol ©  BlokEarHT Birk dpol

~logso(p)
Blink.EarHT

~logiolp)
Blink.dpol

As demonstrated above, users can specify any one or multiple models. GAPIE andéple input data
formats, including both numeric, hapmap, and PLINK genotype formats. GAPIT produces comprehensive
repots to interpret data and results in publication ready formats. For examples, the distribution of marker
density and decay of linkage equilibrium inform user if the markers are dense enough. When GWAS were
conducted with multiple traits, environments, or Itiple models, GAPIT produces the integrated
Manhattan plots with overlapped associated markers highlighitedboveanalysis should be completed
within coupleminutes. In your current R working directory, you shotiidd multiples files with three types

of extensions: pdf, csv, and txt. Ttheee types othe Manhattan plstare displaye@bove

6
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1.3 How to use the GAPIT user manual?

The next three chapters-8 describe dtails on the input dat&§WAS, GS,and output result<Chapter6
presents scenarios to demonstrate the applications. Chapfer users to use GAPIT for prototyping. The
last chapter § lists frequently questions and answerBefore reading the nexthree chapters, we
recommend you go directly to the tutorial chapter and run other tutorials.

1.4 How to cite GAPIT?

Although historical version of GAPIT (1 and 2) are available, the newest version (3) is recommended for
full support from GAPIT teamCitations should specify the version and models used. For an example, a
GWAS run by GAPIT version 3using BLINKcancittea i The GWAS was conduct e
3)2 using BLINK modet®0. A GS with run by GAPIT version 3 using gBLWBLUPc an ci te as
conducted by GAPIT (version3)sing gBLUP modéland cBLUP modéfo.
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2 | nupDat a

There aresix types of input data: phenotype (Y), genotype in hapmap format (G), genotype data in
numerical format (GD), genotype map (GM), kinship (K), and covariate variables §é¥Jable 2.1
Phenotypic datanust beprovided,and the rest areptional, including genotype data, map, kinship, and
covariate. Kinship can be provided by users or be generated from genotype data, or even omitted by suin
BLINK method.Genotypic data may not be needed for genomic prediction if the kinship mataxidex.
Covariate variables (fixed effects), such as population structure represented by the Q matrix (subpopulatior
proportion) or principal components (PCaleoptional. GAPIT provides the option to calculate PCs from

the genotypic data. All inputfie s houl d be saved as a fAiTabodo del i m

Notice: It is important that each taxa name is spelled, punctuated, and capitalized (R is case sensitive) the
same way in each of the input data sets. If this is not done, they will be excluded fromalykes.an
Additionally, the taxa names must not be numeric.

Table 2.1 Gallery of GAPIT input data

:t?a rram Default Options Description Tutorial files*

Y NULL  User Phenotype mdp_traits.txt

Kl NULL  User Kinship Matrix KSN.txt

Ccv NULL  User Covariate Variables mdp_PQxt

G NULL  User Genotype Data in Hapmap Form: mdp_genotype_test.hmp.txt
GD NULL  User Genotype Data in Numeric Formeé mdp_numeric.txt

GM NULL  User Sgrr:r?;)t/pe VELD il NSt mdp_SNP_information.txt

Thetutorial file can be downloaded dittp://zzlab.net/ GAPIT/GAPIT_Tutorial_Data.ziphese ifes can
read into R with following commands:

#Phenotypic Data
#myY < read.table("mdp_traits.txt", head = TRUE)

#HapMap genotype format
myG < read.delim("mdp_genotype_test.hmp.txt", head = FALSE)

#Numerical genotype format

Hrmmmm e A pair of Genotypic Data and map fites

myGD < read.table("mdp_numeric.txt", head = TRUE)

myGM<r ead. t abl e(fimdp_SNP_information.txt", head = TRUE)

#Kinship matrix
myKI <- read.table("KSN.txt", head =AESE)

#covaraite variables (such as population structure represented by Q matrix or PC)
myCV <- read.table("mdp_PC", head = TRUE)

2.1 Phenotypic Data

The user has the option of performing GWAS on multiple phenotypes in GAPIT. This is achieved by
including multiple phenotypecolumnsin phenotypidile. Taxa names should be in the first column of the
phenotypic data file and the remaining columns should contain the observed phenotype from each
i ndividual . Mi ssing data showl d Ththee ifndisda tteedh oy
tutorial data (mdp_traits.txt) are displayed as follows:

8
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Taxa EarHT dpoll EarDia
811 59.5 MaN NaN
4226 65.5 59,5 32.21933
4722 81.13 715 32421
33-16 64.75 64.5 NaN
38-11 92,25 68.5  37.897
AlB8 27.5 62 31419
A214N 65 69  32.006
A239 47.88 61  36.064
A272 35.63 70 NaN
Ad41-5 53.5 67.5  35.008
The file is ATabo deli mited. The first row con

indicate the phenotype name, which is used for theireer of the analysis.

The phenotype file can be input to R by typing command line:

myY <- read.table("mdp_traits.txt", head = TRUE)

2.2 Genotypic Data

Genotypic data are required for GWAS, but are optionaGfarin the lateicase, genomic prediction is
performed using a kinship matrix provided by the uG&APIT accepts genotypic data in either HapMap
format or in numeric format.

2.2.1 Hapmap Format

Hapmap is a commonly used format for storing sequence data where SNP inforenstitwad in the rows
and taxa information is stored in the columns. This format allows the SNP information (chromosome and
position) and genotypgef each taxa to be storedarsinglefile.

The first 11 columns display attributes of the SNPs and theimgmgacolumns show the nucleotides
observed at each SNP for each taxa. The first row contains the header labels and each remaining ro\
contains all the information for a single SNP. The first five individuals on the first seven SNPs from the
tutorial datalmdp_genotype.hmp.txt) are presented below.

rs alleles chrom pos strand assembly center protlSID assayLSID panel QCcode 33-16 38-11 4226 4722 A138
PZB0O0OB59.1 AfC 1 157104 + AGPvVL Panzea NA MNA maize282 NA cC CcC CcC CcC AL
PZAO0L1271.1 c/G 1 1347934 + AGPVL Panzea NA NA maize2d2 NA CcC GG CcC GG CcC
PZAD3613.2 G/T 1 2914066 + AGPvV1 Panzea NA MNA maize282 NA GG GG GG GG GG
PZAO03613.1 AJT 1 2914171 + AGPvl Panzea NA NA maize282 NA T T T T T
PZA03614.2 AfG 1 2315078 + AGPV1 Panzea NA MNA maize282 NA GG GG GG GG GG
PZAO03614.1 AJT 1 2915242 + AGPvVL Panzea NA MNA maize282 NA T T T T T
PZAD0258.3 c/G 1 2973508 + AGPVL Panzea NA NA maize282 NA GG CcC CcC Cca CcC
PZA02962.13  AJT 1 3205252 + AGPvVL Panzea NA MNA maize282 NA T T T T T
PZA02962.14 C/G 1 3205262 + AGPv1 Panzea NA NA maize282 NA cC cc cc cC cC
PZAO0599.25 /T 1 3206090 + AGPV1 Panzea NA MNA maize282 NA CcC T CcC T T

This file can beread into R by typing the following command line:
myG < read.table("mdp_genotype_test.hmp.txt", head = FALSE)
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Although all of the first 11 columns are required, GAPIT usesonly 3sféhe t he fAr so col
the SNP name (e.g. APzZB00859.10); the fAchromo c
which is the SNP6s base pair (bp) position It i
eightcounrms wi th ANAOs. To be consistent with HapMay

i ndicated by either ANNO (double bit) or ANO (s

For genotypic data in HapMap format, GAPIT accepts genotypes in either double bit or in the standard
IUPAC code (single bit) as following:

Genotype AA CC GG TT AG CT CG AT GT AC
Code A CGTR Y S WK M

By default, the HapMap numericalization is performed so that the sign of the allelic effect estimate (in the
GAPIT output) is with respect to the nucleotide that is second in alphabetical order. For example, if the
nud eoti des at a SNP are AA0 and ATO0, then a posi
AMaj or.allele.zero = TRUEO in the GAPIT() funct
being with respect to the minor allela.this scenario, a positive allelic effect estimate will indicate that the
minor allele is favorable.

2.2.2Numeric format

GAPIT also accepts the numeric formale order of taxa and SNPs is reversed from the HapMap format.
Columns are used for SNPs and rowessed for taxan the numeric formafThis format is problematic in

Excel because the number of SNPs used in a typical analysis exceeds the Excel column limit. Additionally,
this format does not contain the chromosome and position of the SNPs. Thévedmeparate files must

be provided to GAPI T. One file contains the nun
contains the position of each SNP along the gen
Note:The SNPs in the fAGDO emthdsame®keér. f i | es NEED t o

Homozygotes are denoted by fA00 and fA20 and het
numeric value between A00 and A20 can represent
with SNP names, and tffiest column is the taxa nam&he example file (dp_numeric.txt from tutorial data $et

is as following:

taxa PZB00859.1PZA01271.1PZA03613.2PZA03613.1
3316 2 0 0
3811 2 2
4226 2 0
4722 2 2
A188 0 0
é

o O O O
N NDNDNDDN

This file can beread into R by typing the following command line:
myGD < read.table("mdp_numeric.txt", head = TRUE)

Thegenetic mapf{ G M dile contains the name and location of each SNP. The first column is the SNP id,
the second column is the chromosome, and the third column is the base pair position. As seen in the examp
the first row is a header fil&@he example file (ndp_SNP_informton.txt from tutorial data s¢is as following:

1C
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Name Chromosome Position
PZB00859.1 1 157104
PZA01271.1 1 1947984
PZA03613.2 1 2914066
PZA03613.1 1 2914171
PZA03614.2 1 2915078
é

This file is read into R by typing the following commadirce:
myGM <- read.table("mdp_SNP_information.txt", head = TRUE)

2.3 Kinship

The kinship matrix file (called AKIO in GAPIT)
is the taxa name, and the rest is a square symmetric matrix. Unlike the other input data files, the first row
of the kinship matrix file does not cossof headerslhe example KSN.txt from tutorial data s§is as following:

33-16 2 0.228837 0.229322 0.268842 0.237145 0.0781 0.347107
38-11 0.228837 2 0.244965 0.293708 0.175211 0.079276 0.295606
4226 0.229322 0.244963 2 0.214859 0.236153 0.0326093 0.283713
4722 0.268842 0.293708 0.214859 2 0.25935 0.061573 0.160104
AlB8 0.237145 0.175211 0.236153 0.25935 |2 0.061469 0.232799
A214N 0.0781 0.079276 0.082693 0.061573 0.061469 2 0.110364
A239 0.347107 0.295606 0.283713 0.160104 0.232799 0.110364 2

This file is read into R by typing the following command line:
myKI <- read.table("KSN.txt", head = FALSE)

2.4 Covariate variables

A file containing GAPIThcan ireltde mforhatianisuctead pofuation striicture
(commonly called the AQ matrixo), which are fit
files are formatted similarly to the phenotypic files. Specifically, the first column ¢srdisaxa names,

and the remaining columns contain covariate values. The first row consists of column labels. The first
column can be | abeled fATaxao, and t Hree eampélé ni nc
(mdp_population_structure.txt frotatorial data sgtis as following
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Taxa
33-16
38-11
4226
4722
ALEB
AZ14N
AZ239
A272
Ad41-5

ai

a2
0.014
0.003
0.071
0.035
0.013
0.762
0.035
0.019
0.005

0.972
0.993
0.917
0.854
0.932
0.017
0.963
0.122
0.5331

Q3

This file is read into R by typing the following command line:
myCV <- read.table("mdp_population_structure.txt", head = TRUE)

12
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0.221
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0.859
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3 GWAS

3.1 GWAS modebverview

Currently, GAPIT has implemented more than ten modéie. similarity and difference amorsgven
milestone modelare summarized in the figubelow. Thesimplestmodel(t test)is to directly detect the
association between a phenotype (y) andkera (Si) one at a time, where i=1 to m, and m is number of
markers. When a cofactor, such as population stru¢@ires introduced through a general linear model
(GLM), the cofactor may not only account residuals (e) partially, but also adjust sortdleifedoes not
belong to the testing markers and consequently reduce false positives. The mixed linear model (MLM)
applies the same principle by adding individual
structure defined by the kinsh{l{) among individuals. In both Q or Q+K models, Q and K stay the same.
There are no cofactors that are adjusted by the marker tests.

Inclusion of cofactors benefits the
reduction of false positives for testin— t test

4
markers in GLM and MLM. The| y = s, + e 5
disadvantage ishese cofactors are als -
confounded with the testing markers. I~ GLM n
MLM particularly, the kinshipdefithe | v = s, + Q + e =
' e - ! O O
genetic effect of individuala/hich equal 1 = o
the sum of causal genes. Many kno "~ MLM 4 3
genes identified by GLM had signal 3 Z o
below threshold using ML v o= ff_ * QF KR+ oe o E
The compressed MLM(CMLM) was _ MLMM v w
proposed to reduce the confoundir 3 3
problem of MLM. Individuals are| y = s + S + Q + K + e T U
compressed into group3he individual } | g g
genetic effects are replaced with tt w o oown
group genetic effects. Correspondingh SUPER g g
kinship among individuals is replace: " g
with kinship among groups with | v - s 4+ K + Q + e L; L;
grouping maximized usingmaximum vy a o
likelihood method The optimization of — 8 8
kinship among groups further improv:. gzrmcpu ce  as
statistical powétin the enriched CMLM 1 o O
(ECMLM). y = s + S’ + e o
. | R
GLM and MLM are the special cases ¢ _ K + e 5 i
CMLM which is a general format. Wher £ 8
number of groups is forced to be one [ BLINK 0 o
CMLM, CMLM becomes GLM. | . £ T
Similarly, when number of groups il ¥ = S * 3 * e 2 3
forcedto bethe number of individuals - l _ |c'_J &
CMLM, CMLM becomes MLM. The | y = S + e AR

optimization of groping improves
statistical powef.
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The optimization of groping in CMLM and optimization of kinship amagrgups in ECMLM are
thoroughly based on phenotypes. There is no impact from marker &g situation was changed the
multiple loci mixed model (MLMM). Through marker association tests, the associated markers are fitted
as the cofactors for markeest. The cofactors are adjusted through forward and backward stepwise
regression of mixed model. However, both Q and K remain unchanged.

In the SUPER method, K is derived from the associated markers and is adjected accordingly by the marke
tests. As th& is derived from a smaller number of markers than the Kin MLM and MLMM that are derived
from all the markers, the confounding between K and some of the markers becomes more severe. SUPEI
eliminate the confounding by using the complimentary kinship d#fieen associated markers except for

the ones that are in strong linkage disequilibrium (LD) with the testing markers under-gefused
threshold.

To eliminate the ambiguity of determining associated markers are in LD with a testing rrarkeCPU
completely removes the confounding from kinship by using a{eféett model without a kinship derived

either from all markers, or associated markers. Instead, the kinship derived from the associated markers i
used to select the associated makesing the maximum likelihood method. This process overcomes the
model overfitting problems of stepwise regression. FarmCPU uses both the fixed effect model and the
random effect model iteratively.

In both SUPER and FarmCPU models, the bin approacledtosavoid selecting markers from the same
locations with bin size and the number of bins optimized using the maximum likelihood method. The
underlying assumption is that causal genes are distributed equally across the genome. BLINK eliminates
the assumjpdn to improve statistical power by using the linkage disequilibrium (LD) method. Markers are
sorted with the most significantly associated maker on the top as reference. The remaining markers are
removed if they are in LD with the most associated markarong the remaining makers, the most
significantly associated maker is selected as the reference. The process is repeated until no markers can |
removed. The random effect model in FarmCPU to select associated markers using the maximum likelihooc
method emains a high computing cost for a large number of individuals. BLINK approximate the
maximum likelihood using Bayesian Information Content (BIC) in a fig#dct model to eliminate the
computational burden.

3.2 Model selection

With the multiplemodelsimplemented in GAPIT,a common question is which to choose. Many people
maketheselection based on their trust gairmeer experienceFor example, @meresearchersiust choose
GLM implemented in PLINK® because it is the onkoftwareaccepted by the reviewers and editors in their
fields. In general, computing efficiency and statiat powershould be theriteriafor the selection.

Two models use the fixeeffect model only which is the most computing efficient, including GLM and
BLINK. FarmCPU is a hybrid that uses both the fiseftect model and the random effect model. Thé res
use a fixed and random effects mixed model which is computationally expensive, including MLM, CMLM,
ECMLM, SUPER, and MLMM. CMLM uses groups and is cubic time faster than MLM. Due to additional
optimizations, ECMLM and SUPER are slower than CMLM. Foria &nalysis, GLM and BLINK are
good to start with.

Regarding statistical power, multiple loci models (e.g. MLMM, FarmCPU, and BLINK) are superior to the
rest. Withinmultiple loci model categgr FarmCPU is superior to MLMM and BLINK is superior to
FarmCPU3. Within the singlelocus model categgr, MLM is superior to GLM, CMLM is superiorto
MLM 6, ECMLM is superior to ECMLM, SUPER and MLM are superior to MLMC. These relationships
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are summarized by the model stairs in the first chaptermiéteod ora higherstairhas higher statistical
power than the onena lower stair. The magnitude of the differences among models may change from case
to case, however, their ordstays the same. The inversion of the ordes hat been found. Therefore,
BLINK is selected as the defauBAPIT modelbecause of its highomputing efficiency and statistical
power.Users are welcome to use the following statement to justify the usage of BLINK.

Al n addition to the c apoampondntsasyovdrige reduaefalse pasitivast e p
due to populatiorstratification, BLINK iteratively incorporates associated markers as covariates for
testing markerso eliminate their connection to the cryptic relationship among individddle assdated

markers are selectestcording to linkage disequilibriupoptimized for Bayesian information conteamd
reexamined across multiple tests to reduce false negatives

3.3Model description

The cetailed model description is critical for readers to understand exactly how the analyses were performed
or to replicate the analyses. As all the implemented models are well described elsewhere, the mode
description should focus on the covariates thatspexific to the analyse&ll covariates should be
described irdetail including the levels for the category covariates. Here is an example:

AGAWAS was conduct e tusiigBLINKAMBIETThe covariate vanals indlyde the
first three principal components derivédm all the markersandthe origingroup. The origin group was
coded as indicatar(0/1) for each of therigin groups except the last one to avoid linear dependency

3.4 Model justification

It was found during the development of FarmCPU that causal genes can be detected even when they ar
confounded with population structure gmapulation structure such as the first three principal components
were fitted as covariates for testing markers. Aareonymous-armCPU reviewer suggested, fitting several

PCs does not huthe degree of freedom very much, however, it Beéfpsituations ther@arenongenetic

effects associated with population structure during phenotyping. Otheravisdse positive mase would

appear to capture the ngenetic effect. Therefore, fitting several PCs is recommended for all analyses.
The related justification is as follows.

fiPrincipal component analysis was performed with GA@Brsion 3} usingall available SNPs. GAWAS
was conducted by GAPIT (versior? 8sing BLINK modél. The first principal components were fitted as
covariae variables to reducthefalse positved ue t o popul ation stratificaea

3.5GAPIT Syntax

GAPITcanbeexecutddy cal |l i phg WGAPRI TOputs and parameters
include phenotypes, genotype data, genetic map, covariate variablegengnaparametersclude
number of PCs as covariates and models. Mereraparameters can be found in Table 3.5.1.

/ Phenotype: ID, traitl, 2,...
myGAPIT=GAPIT(Y=myY[,c(1,2,3)],

N — Numeric genotypes
GD=myGD,

GM=myGM, ——— Genetic map

e gy PCA.total=3, Specify number of PCs

CV=myOrigin[1, 2, 3 4],

model=c("FarmCPU", "Blink") ) -

Output R Call GAPIT
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There are also parameters specifioiadels. For example, the CMLM model involves number of groups.
These model specific parameters will be describithin the sections of specific models.

Table 35.1. GAPIT input parameters.

Parameter Default Options Description

model Blink 3tRAAMM|;:'\grn?(,\ZAIID_L’\JAanSdU;EE Chooseone or multiplenodekto conduct GWAS
kinship.algorithm VanRaden Zhang, Loiselle and EMMA Algorithm to Derive Kinship from Genotype

kinship.cluster average (riﬁoczg:te}f%V:é%ns,igﬂlc?centroid Clustering algorithm to group individuals based on their kinship
kinship.group Mean Max, Min, and Median Method to derive kinship among groups

LD.chromosome NULL User Chromosome for LD analysis

LD.location NULL User Location (center) of SNPs for LD analysis

LD.range NULL User Range around the Central LocationSiPs for LD Analysis

PCA total 0 >0 Total Number of PCs as Covariates

PCA . scaling None Scaled, Centered.and.scaled  Scale And/Or Center And Scale The SNPs Before Conducting PCA
SNP.FDR 1 >0 and <1 Threshold to Filter SNP on FDR

SNP.MAF 0 >0 and <1 Minor Allele Frequency to Filter SNPs in GWAS Reports
SNP.effect Add Dom Genetic Model

SNP.P3D TRUE FALSE Logic Variable to Use P3D or Not for Testing SNPs
SNP.fraction 1 >0 and <1 Fraction of SNPs Sampled to Estimate Kinship and PCs
SNP.test TRUE FALSE Logic Variable to Test SNPs or Not

3.6 Mixed Linear Model(MLM)

MLM includes both fixed and random effects. Including individuals as random effects gives an MLM the
ability to incorporate information about relationships among individuals. Trif@rmation about
relationships is conveyed through the kinship (K) matrix, which is used in an MLM as the variance
covariance matrix between the individuals. When a genetic mhdsad kinship matrix (K) is used jointly

with population structure (commonl cal | ed t he AQ0 matri x, and® can
or conductiig a principal componentanalysls, t he AQ+Ko approach i mprov:
t oQofi &8nl An MLM can be described using Hender soné

Y=Xb+Zu+e (2)

whereY is thevector of observed phenotypdsis an unknown vector containing fixed effects, including
the genetic marker, population structure (Q), and the interaéptan unknown vector of random additive
genetic effects from multiple background QTL for indivithdines; X andZ are the known design matrices;
andeis the unobserved vector of residuals. Tltande vectors are assumed to be normally distributed with
a null mean and a variance of:

Varé’\uq_éG 05
0~ (0]
ce2 &b R2 @)

whereG = %K wi t %has the additive geneticariance andK as the kinship matrix. Homogeneous
variance is assumed for the residual effect;Re., %[,  w h %is tiee reidual variance. The proportion
of the total variance explained by the genetic variance is defined as heritabjlity (
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: ®3)

3.7 Compressed MLMCMLM)

As kinship is derived from all the markers, incorporating with the kinship for testing markers in a MLM
causes the confounding between the testing markers anidnhé i vi dual sé geneti c
structure defined by the kinship. To reduce the confounding, individuals are replaced by their corresponding
groups in the compressed MLM developed by Zhang et al in?20Cister analysiss usedto assign

similar individuals into groups. The elements of the kinship matrix are used as similarity measures in the
clustering analysis. Various linkage criteria (e.g., unweighted pair group mettio@rithmetic mean,
UPGMA) can be used to group the lines together. The number of groups is specified by the user. Once the
lines are assigned into groups, summary statistics of the kinship between and within groups are used as tf
elements of a reducddnship matrix. This procedure is used to create a reduced kinship matrix for each
compression level.

A series of mixed models are fitted to determine the optimal compression level. The value of the log
likelihood function is obtained for each model, a&hd optimal compression level is defined as the one
whose fitted mixed model yields the largest log likelihood function value. There are three parameters to
determine the range and interval of groups for examination: group.from, group.to and groupuby. The
defaults are Op and 10, whera is the total number of individuals.

3.8 GeneralLinear Model (GLM)

Regular MLM? is an extreme case of CMLM where each individual is considered as a group. It can be
simply peformed by setting the number of groups equal to the total number of individuals, e.g. group.from
= n and group.to =n, wheren is total number of individuals shared in both the genotype and phenotype
files. Similarly, general linear model (GLM) is anothettreme case of CMLM where all individuals are
considered as one groujp.can be simply performed by setting the number of groups equal to one, i.e.
groupfrom =1 and group.to 1. GLM is the working model in PLINRE, a primary software for studies in
humangenetics.

3.9 P3D/EMMAX

In addition to implementing compression, GARISesEMMAXx/P3D%24 to reduce computing time for

MLM, CMLM, ECMLM, and SUPER If specified,the additive genetidifa) and residual{fe) variance
components will be estimated prior to conducting GWAS. These estimates are then used for each SNF
where a mixed model is fitted.

3.10 SUPER

SUFER is an advanced version of FaSé&lect, developed Wang et al. in 2016. The major difference
between SUBR and FaSTSelect is that SUPER uses bin approach to select associated markers. The entire
genome is divided into equal sized bins and each bin is represented by the most significant marker on the
bin. The bin size andumber of bins selected are optindagsing maximum likelihood method in a random
model with the kinship derived from the selected bins. Consequently, the confounding between the kinship
and some of markers become more severe than the kinship derived from all markers. SUPER eliminate th
corfounding by using the complementary kinship derived from associated markers except the ones that are
in strong linkage disequilibrium (LD) with the testing markers under a user defined threshold. Both
simulation and real data demonstrated that SUPER Ilghéthstatistical power than regular MLM.

To run SUPER in GAPIT, simply specify modeISUPER.
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3.11 Multiple Locus MixedLinear Model(MLMM)

GAPITimplemented a Multiple Loci MixetlinearModel (MLMM) which use forwarebackward stepwise
linear mixedmodel regession tanclude associated markers as covariates

To run MLMM in GAPIT, simply specifymodel="MLMM" .

3.12 FarmCPU

To solve the problem of false positive control and confounding between testing markers and cofactors
simultaneouslyan iterative method, namdtixed and random model Circulating Probability Unification
(FarmCPU), wasdeveloped in 2016. The associated markers detected from the iterations are fitted as the
cofactors to control false positives for testing the rest markers in a fixed effect model. To avoid the over
model fitting problem in stepwe regression, a random effect model is used to select the associated markers
using maximum likelihood methét

In the cycle of fixed effect model of iterations, markers are tested against the associated markers, not the
confounded kinship used by MLM, CMLM, ECMLM, SUPER, and MLMM. In the cycle of random effect
model of iterations, markers are selectéedong a smalhumberof associated markers using maximum
likelihood method to avoid the over model fitting problem in stepwise regression used by MLMM, which
select marker among all available markers. Consequently, FarmCPU exhibits higher statistical power than
MLMM 11 As FarmCPU tests markers in a fixed effect model, it is computational efficient than the methods
that test markers in random effect model, such as MLM, CMLM, ECMLM, SUPER, and MLMM

To run FarmCPU in GAPIT, simply specify modéEarmCPU.

3.13 BLINK

BLINK method was designetb have both high statistical power and computational efficiénttywas

inspired by FarmCPU method with two major changes to achieve the objectives. One is to eliminate the
assumption that causal genes are evenly distributed across genome that required by FarmCPU. As th
assumption cause either inclusion of non causal genesissing the causal genes that are in the same bin
with another causal genes with stronger signal. BLINK works directly on markers instead of bins. Markers
that are inlinkage disequilibrium (LD) with the most significant marker are excluded. For tlmndec
remaining marker, the exclusion is conducted in the same way as the most significant marker, so on and s
forth until no marker can be excluded.

The other change is to use Bayesian Information Content (BIC) of a fixed effect model to approximate the
maximum likelihood of a random effect modekelect the associated markers among the markers remained
the exclusion based on LD. As both the models of testing markers and selecting associated markers a
cofactors are fixed effect model, the computatiomplexity reach the maximum. A dataset with one
million individuals and one million markers can be solved in hours by using BLINK C vef$ierBLINK

R version can be run as standard alone, or through GABITin BLINK in GAPIT, simply specify model=
"Blink". The performances of the two versions were documented by the BLINK article on GigaScience
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4 Genomic Selection

Genomic selection, or genomic prediction termed in human genetics, is to use genetic markers across th
whole genome to prediéndividual performances if formats of phenotypes or predicted genetic merit. In
contrast to GWAS, there is a strong interaction between prediction methods and the traits measured in :
particular condition. The reversion of method superiorities has g fin many cases. The genomic
selection based on SUPER, named SUPER BLUP, has higher prediction accuracy than the genomic
selection based on MLM known as genomic BLUP (gBLUP) for traits controlled with a smaller number of
genes. The prediction accuracae reversed for traits controlled by a large number of genes. The genomic
selection based on CMLM, named Compressed BLUP, has higher accuracy for traits with low heritability
than gBLUP. GAPIT implemented a series of methods for GWAS and genomic selewtiard high
statistical power

4.1 GenomicBLUP

Genomic prediction is performed with the method based on genomic best linear unbiased prediction,
(gBLUP)'. The method was extended to compressed best linear unpiasiction (cBLUP) by using the
CMLM approach that was proposed for GWAShe genetic potential far group, which is derived from

the BLUPs of group effects in the compressed mixed model, is used as a prediction for all individuals in
the group.

The groups created from compression belong to either a reference (R) or an inference (l) panel. All groups
in the reference panel have at least one individual with phenotypic data, and all groups in the inference
panel have no individuals with phenotypic data. Genomic prediction for groups in the inference panel is
based on phenotypic ties with correspondingugs in the reference panel.

The group kinship matrix is then partitioned into to R and | groups as follows:

s k
k= g(RR RI 4)
ek|R kn

wherekrr is the varianceovariance matrix for all groups in the reference paneljs the covariance

matrix between the groups in the reference and inference panels,(kri) & the covariance matrix

between the groups inference and reference panelkiaisdhe variance&ovariance matrix between the
groups in the inference panels.

Solving of mixed linear model is performed on the reference individuals.

Yr=Xgb+Zu, €, )

where all terms are as d subscnpedenotesrthat®njyuraividuasnin tfel ) |,

reference panel are considered.

The genomic prediction of the inference groups
— -1

wherekir, krr , andur are as previously defined, andis the predicted genomic values of the individuals
in the inference group.

The reliability of genomic prediction is calculated as follows:
PEV
52 19

a

Reliability=1-
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(7)

where PEV is the prediction error variance which is the diagonal element in the invehsmteftide of
the mixed model equation, a s: is the genetivariance

4.2 Compressed gBLUP

The compressed MLM substitute individuals with their corresponding groups that were clustered based on
the kinship among individuals. Reseadgmonstratethat the compressed MLM had higher statistical

power for GWAS. Research also demonstrated that casapd MLM also had higher prediction accuracy
than the regular MLM, especially for traits with low heritability. As the regular MLM is an extreme case

of compressed MLM, the compressed MLM has higher, or at least equal prediction accuracy as the
regular MMM. When a compressed MLM is specified in Gy
predicted by the breeding values of their corresponding groups.

4.3 SUPER gBLUP

The regular MLM uses the kinship derived from all the markers while SUPER uses the kinshigh derive
from the associated markers. As the associated markers are selected from all the markers using the
maximum likelihood method, the kinship used by SUPER has a better likelihood than the kinship used by
the regular MLM. Research demonstrated that the atturbreeding values from SUPER had higher
prediction accuracy than the estimated breeding values from the regular MLM

2C



GAPIT User Manual
5 Out pRetsul t s

GAPIT produces a series of output files that are saved in two formats. All tabular results are saved as comm:
separged value (.csv) files, and all graphs are stored as printable document format (.pdf) files. This section
provides descriptions of these output files.

Allelic_Effect Estimates Estimate allelic effect with method Csv
Df.tValue.StdErr Estimateallelic t-value Csv
GWAS.Results SNP information and #/alue Ccsv
Log Log of whole model Csv
PRED Genomic Prediction Csv
ROC Table forpower and FDR Csv
Kin.VanRaden kinship with VanRanden method Csv
PCA Principle components analysis CsVv
PCA.eigenvalues Eigenvalues of PCA Csv
PCA.loadings Rotation of PCA CSVv
Compression.multiple.group Compresdikelihood, heritability and variance. PDF
MAF Minimum Allelic Frequency PDF
Manhattan.Plot.Chromosomewise Chromosome Manhattan PDF
Manhattan.Plot. Genomewise GenomeManhattan PDF
Optimum Heritability and Variance components PDF
phenotype_view Phenotype analysis PDF
QQ-Plot QQ plot PDF
ROC Power and FDR in ROC PDF
Heterozygosity Heterozygosity ofjenotype PDF
Kin.VanRaden Heatmap of kinship PDF
Marker.Density Marker Density PDF
Marker.LD LD of first 1000 markers PDF
PCA.2D 2D PCA plot PDF
PCA.3D 3D PCA plot PDF
PCA.eigenValue Eigenvalue and variance of PCA PDF
NJtree.fan Fantype NJ tree PDF
NJtree.unrooted Unrooted N tree PDF
Manhattan.Mutiple.Plot Manhattan plot for multiple traits or methods PDF
Circular.Manhattan.Plot. CircularManhattan plot PDF
Multraits.QQplot QQ plot for multiple trait omethod PDF
Interactive.PCA InteractivePCA plot HTML
Interactive.Manhattan InteractiveManhattan plot HTML
Interactive.QQ InteractiveQQ plot HTML
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5.1 Phenotype diagnosis

GAPIT diagnosis phenotype in several ways, including scatterhgddgram, box plot and accumulative
distribution.
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5.2 Marker density

Marker density is critical to establish Linkage Disequilibrium (LD) between markers and causal
mutations. Comparison between the marker density and the LD decade over gistaitzs the
indication if markers are dense enough to have good coverage of LD.
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Figure 5.2 Frequency and accumulative frequency afrker density. Distribution of marker density is
displayed as a histogram aad accumulative distribution
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5.3 Linkage Disequilibrium Decay

Linkage disequilibrium are measured as R square for pair wise markers and plotted against their distance.
The moving aveage of adjacent markers were calculated by using a sliding windowgewitrarkers.
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Figure 5.3 Linkage disequilibrium (LD¥lec over distance. LDs were calculated on sliding windows with
100 adjacent genetic markers. Each dot represents a pair of distances between two markers on the windo
and their sqared correlation coefficienThe red line isite moving average of the 10 adjacent markers.

5.4 Heterozygosis

The frequency olieterozygousvere calculated for both individuals and markers. High level of
heterozygosis indicated low quality. For example, over 50% of heterozygosis on inbred lines for some of
markers suggested they problematic (see bottom right).
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5.5 Principal Component (PC) plot
For each PC included in the GWAS and GPS models, the observed PC values are plotted.

Figure 5.5 Pairwise dots and 3D plotf principal component (PC
5.6 Kinship plot

The kinship matrix used in GWAS and GPS is visualized through a heat magduce computational
burden, this graph is not made when the sample size exceeds 1,000.
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