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Why did nature produce that phenotype?

What phenotype will nature produce?

How to make nature produce that phenotype?
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Genomic selection
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Optimizer and nature
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Interactions between optimizer and nature
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Optimizer vs. nature vs. simulator
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Key messages
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Optimizers
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PS phenotypic selection
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CGS conventional genomic selection

� GEBV (genomic estimated breeding value): Sum of additive
genetic effects of all alleles [Meuwissen et al. 2001]

� Select individuals that have the highest GEBVs.

� Pros: Effective at achieving short-term genetic gains (verified
by numerous experiments in plants and animals)

� Cons: Loss of long-term growth potential
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CGS example
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OHV optimal haploid value

� OHV (optimal haploid value): Best progeny from self
pollination in the next generation [Daetwyler et al. 2015]

� Select individuals that have the highest OHVs.

� Pros: Emphasis on the potential of progeny (rather than
achievement of the parents)

� Cons: Still a truncation selection
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OHV example

favorable

unfavorable

GEBV X

OHV X



17/40

OPV optimal population value

� OPV (optimal population value): Best progeny of selected
parents after multiple generations [Goiffon et al. 2017]

� Select a group of parents that have the highest OPV.

� Pros: Proposed complementarity based selection rather than
truncation selection

� Cons: Ignores time constraints
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OPV example
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Publication
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Deep blue (1996)
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AlphaGo (2016)
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Go vs. GS

States Board positions, Population genotypes,
∼ 3361 ∼ 34,000,000

Actions Adding one stone to Selection, mating, resource
the board, ≤ 361 allocation, ∼ 20040

Transition Deterministic Stochastic
Reward Win or loss Genetic gain
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LAS look ahead selection

generation t × × × ×
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LATB look ahead trace back
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Differences between LATB and LAS

ä LATB accounts for selection; LAS doesn’t.

ä LAS assumes accurate allele effects; LATB doesn’t.

ä LATB looks ahead one generation at a time;
LAS looks directly at the final generation.
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Nature vs. simulator
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Transparent vs. opaque simulators

Transparent Opaque

G G is the whole
genome

G is a subset of the whole genome G

β β is the truth True additive and non-additive effects,
θ, of the whole genome are unknown

P P = Gβ + ε P = f(G|θ) + ε

Q: How to make G and f(·|θ)?
A: Arbitrarily. The purpose is not to predict how nature behaves
but to reveal how the optimizer interacts with an opaque nature.
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Four simulators

Simulator Observed Whole Additive Dominance
Genome Genome Effects Epistases

S1 1,000 1,000 known none
S2 1,000 1,000 unknown none
S3 1,000 100,000 unknown none
S4 1,000 100,000 unknown unknown
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Additive effects used in simulators

β under transparent simulators S1 and S2

β under opaque simulator S3

β under opaque simulator S4



32/40

Recombination frequencies used in simulators

r under transparent simulators S1 and S2

r under opaque simulators S3 and S4
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Four optimizers

Optimizer Prediction
PS none

CGS one β from ridge regression
LAS one β from ridge regression
LATB multiple β’s from ridge regression
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Results: phenotypic response

S1 S2 S3 S4
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Results: genetic diversity (minor allele frequency)

S1 S2 S3 S4
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Look ahead selection for multiple traits
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Take home message

Real World

Simulation

Gt

P t
Optimizer Nature

Gt+1

P t+1

t← t+ 1

Gt

P t
Optimizer Simulator

Gt+1

P t+1

t← t+ 1



39/40

Funding agencies
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Thank you

Lizhi Wang
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